
Harbor at Hastings Operable Unit Number 01: On-Site Contamination State Superfund Project Hastings-on-Hudson, Westchester County Site No. 360022 March 2012

Prepared by Division of Environmental Remediation New York State Department of Environmental Conservation

DECLARATION STATEMENT - RECORD OF DECISION AMENDMENT

Harbor at Hastings Operable Unit Number: 01: On-Site Contamination State Superfund Project Hastings-on-Hudson, Westchester County Site No. 360022 March 2012

Statement of Purpose and Basis

This Record of Decision Amendment presents the selected remedy for Operable Unit Number 1 of the Harbor at Hastings site, a Class 2 inactive hazardous waste disposal site. The remedial program was chosen in accordance with the New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR) Part 375, and is not inconsistent with the National Oil and Hazardous Substances Pollution Contingency Plan of March 8, 1990 (40CFR300), as amended.

This decision is based on the Administrative Record of the New York State Department of Environmental Conservation (the Department) for Operable Unit Number: 01 of the Harbor at Hastings site and the public's input to the proposed remedy presented by the Department. A listing of the documents included as a part of the Administrative Record is included in Appendix B of the ROD Amendment.

Description of Selected Remedy

The elements of the amended remedy listed below are identified as unchanged, modified or new when compared to the original 2004 ROD:

1. A remedial design program to verify the components of the conceptual design and provide the details necessary for the construction, operation and maintenance, and monitoring of the remedial program. Green remediation principals and techniques will be implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31. The major green remediation components are as follows:

- Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
- Reducing direct and indirect greenhouse gas and other emissions;
- Increasing energy efficiency and minimizing use of non-renewable energy;
- Conserving and efficiently managing resources and materials;
- Reducing waste, increasing recycling and increasing reuse of materials which would

otherwise be considered a waste;

- Maximizing habitat value and creating habitat when possible;
- Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals; and
- Integrating the remedy with the end use where possible and encouraging green and sustainable re-development (modified)

2. At the Northwest Corner of the site and along the Northern Shoreline, excavation of surface soil (0-12 inches) containing greater than 1ppm PCB and subsurface soil containing greater than 10 ppm PCB to a maximum depth of 9 feet. Outside of the Northwest Corner and the Northern Shoreline areas, excavation of surface soil (0-12 inches) containing greater than 1ppm PCB and subsurface soil containing greater than 10 ppm PCB, to a maximum depth of 12 feet. (modified)

3. Outfalls and associated pipe bedding from Building 52 that are potential PCB source areas will be excavated, sampled and removed, or decommissioned as approved by the Department. (new)

4. Excavation of shallow soils from the southern portion of the site that are identified as "lead hotspots". These correspond to lead levels between 2,160 ppm and 43,200 ppm. (unchanged)

5. In conjunction with OU2, installation of a sheet pile wall within the Hudson River to provide containment and allow for the recovery of PCB DNAPL onshore and offshore of the northwest corner of the site. The location and alignment of the proposed sheet pile wall will be verified during the remedial design to minimize filling into the Hudson River. The area behind the sheet pile wall will be filled with soil and/or lightweight aggregate as approved by the Department. The sheet pile wall will include sealed joints, installation of tie-rods, upland anchors, and cathodic protection. The wall system will also include groundwater filtration units to adsorb contaminants that may be present in groundwater discharging to the river. (new)

6. The shoreline south of the northwest area, will either be a steel bulkhead or construction of a sloped shoreline cover system. The sloped shoreline cover system will be designed and constructed such that no additional fill material will be placed into the Hudson River, and will require the removal of sediment or fill below the current sediment or water elevation for placement of a cover system. The sloped shoreline cover system will be designed with the following layers: an isolation layer of soil or geotextile designed to prevent the migration of contaminated soil particles into the Hudson River; an erosion protection layer; and a habitat/surface substrate layer. The habitat/surface substrate layer will be designed to restore aquatic, intertidal and stream bank habitats while taking into account erosional forces, such as waves and currents. (new)

7. Construction and operation of a recovery system for PCB DNAPL, consisting of a series of wells and an active pumping system to remove fluid PCB material as it collects. (new)

8. A site cover will be required to allow for restricted residential use of the site. The cover will consist either of the structures such as buildings, pavement, sidewalks comprising the site development or a soil cover in areas where the upper two feet of exposed surface soil will exceed the applicable soil cleanup objectives (SCOs). However, pile-supported structures will not be permitted in any areas where PCB material is potentially present. Where the soil cover is required, it will be a minimum of two feet of soil, meeting the SCOs for cover material as set forth in 6 NYCRR Part 375-6.7(d) for restricted residential use. The soil cover will be placed over a demarcation layer, with the upper six inches of the soil of sufficient quality to maintain a vegetation layer with appropriate natural species. (modified)

9. Imposition of an institutional control in the form of an environmental easement for the controlled property, that will:

- a. require the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8(h)(3);
- b. allow the use and development of the controlled property for restricted-residential, uses as defined by Part 375-1.8(g) which are consistent with the remedial elements, although land use is subject to local zoning laws;
- c. restrict the use of groundwater and/or surface water as a source of potable or process water, without necessary water quality treatment as determined by the Department, NYSDOH or Westchester County DOH;
- d. prohibit agriculture or vegetable gardens on the controlled property with the exception of community gardens with the approval of the Department; and
- e. require compliance with the Department approved Site Management Plan. (new)
- 10. A Site Management Plan will be required, which includes the following:
 - a. an Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective:

Institutional Controls: The Environmental Easement discussed in Paragraph 9 above.

Engineering Controls: The soil cover discussed in Paragraph 8; groundwater treatment system; and PCB DNAPL recovery system.

This plan includes, but may not be limited to:

- i. an Excavation and Sediment Management Plan which details the provisions for management of future excavations in areas of remaining contamination;
- ii. descriptions of the provisions of the environmental easement including any land use, groundwater and/or surface water use restrictions, which include a prohibition on pile supported structures over areas with PCB material;
- iii. provisions for the management and inspection of the identified engineering controls;
- iv. maintaining site access controls and Department notification; and
- v. the steps necessary for the periodic reviews and certification of the institutional and engineering controls.
- b. a Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to:
 - i. monitoring groundwater quality and elevation to assess the performance and effectiveness of the remedy;
 - ii. soil cover system inspection and maintenance as necessary to ensure its function is not impaired by erosion or activities at the site;
 - iii. shore protection system (sheet pile and sloped areas) will be periodically monitored for erosion, corrosion, damage or deterioration; shoreline elevation; and
 - iv. a schedule of monitoring and frequency of submittals to the Department;
- c. an Operation and Maintenance Plan to ensure continued operation, maintenance, monitoring, inspection, and reporting of for any mechanical or physical components of the remedy. The plan includes, but is not limited to:
 - i. compliance monitoring of treatment systems to ensure proper O&M as well as providing the data for any necessary permit or permit equivalent reporting;
 - ii. maintaining site access controls and Department notification; and

iii. providing the Department access to the site and O&M records (modified)

New York State Department of Health Acceptance

The New York State Department of Health (NYSDOH) concurs that the remedy for this site is protective of human health.

Declaration

The selected remedy is protective of human health and the environment, complies with State and Federal requirements that are legally applicable or relevant and appropriate to the remedial action to the extent practicable, and is cost effective. This remedy utilizes permanent solutions and alternative treatment or resource recovery technologies, to the maximum extent practicable, and satisfies the preference for remedies that reduce toxicity, mobility, or volume as a principal element.

March 30,2012

Puscht

Date

Robert W. Schick, P.E., Acting Director Division of Environmental Remediation

RECORD OF DECISION AMENDMENT HARBOR AT HASTINGS SITE OPERABLE UNIT 1 – ON-SITE CONTAMINATION

Village of Hastings on Hudson / Westchester County / Site No. 360022 March 2012

Prepared by the New York State Department of Environmental Conservation Division of Environmental Remediation

SECTION 1: PURPOSE AND SUMMARY OF THE RECORD OF DECISION AMENDMENT

The New York State Department of Environmental Conservation (the Department), in consultation with the New York State Department of Health (NYSDOH), is selecting an amendment to the Record of Decision (ROD) for the above referenced site. The disposal of hazardous wastes at the site has resulted in threats to public health and the environment that would be addressed by the modification to the remedy identified by this ROD Amendment. The disposal of hazardous wastes at this site, as more fully described in the original ROD and Section 6 of this document, has contaminated various environmental media. The selected amendment is intended to attain the remedial action objectives identified for this site for the protection of public health and the environment. This amendment identifies the new information which has lead to this selected amendment and discusses the reasons for the preferred remedy.

The Department has issued this document in accordance with the requirements of New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York; (6 NYCRR) Part 375. This document is a summary of the information that can be found in the site-related reports and documents in the document repository identified below.

On March 18, 2004, the New York State Department of Environmental Conservation (Department) signed a ROD which selected a remedy to cleanup the Harbor at Hastings Site Operable Unit No. 1 (OU1), the onsite soils area. The ROD outlined a set of remedial actions for the site that included partial excavation, containment, groundwater management, and installation of a soil cover. Following the issuance of the ROD, design investigations for OU1 were completed by Atlantic Richfield Company to resolve investigation uncertainties and provide a basis for the remedial design.

The remedial design for OU1 identified constructability issues with the design of the proposed remedy and the need to integrate the OU1 and OU2 (off-site impacts to the Hudson River) remedies. The issues and concerns are related to the alignment of the sheeting at the existing shoreline, the geotechnical stability of the shoreline, and significant new information regarding the presence and extent of dense non-aqueous phase liquid (DNAPL) beneath the Northwest Corner of the site. In addition, the Department issued shoreline protection guidance in 2007 which identified a preference for approaches other than the installation of vertical sheet pile bulkheads, where feasible and appropriate.

The Department is amending the ROD for OU1 of the Harbor at Hastings Site. The selected changes include:

• Modifying the alignment of the sheet pile wall offshore of the northwest corner of the site to extend

into the Hudson River in conjunction with the selected OU2 remedy, to provide containment and enable the recovery of PCB DNAPL;

- Allowing installation of either a sheet pile wall or construction of a sloped shoreline cover system along the shoreline in areas that do not require containment of PCB DNAPL;
- Containing the remaining on-site contamination in the Northwest Area using a shoreline barrier in conjunction with a groundwater control and treatment system, a soil cover system, and monitoring to address groundwater and storm water management;
- Elimination of a slurry wall from the Northwest Corner containment area;
- Construction and operation of a recovery system for PCB DNAPL; and
- Excavating and sampling outfalls and associated pipe bedding from Building 52.

In addition, while the criteria for excavation of PCB-contaminated soils have not changed, the new information collected during the design of the original remedy indicates that the extent of the excavation area is significantly increased.

SECTION 2: CITIZEN PARTICIPATION

The Department seeks input from the community on all remedies. A public comment period was held between January 10 and March 12, 2012, during which the public was encouraged to submit comment on the proposed remedy. All comments on the remedy received during the comment period were considered by the Department in selecting a remedy for the site. Site-related reports and documents were made available for review by the public at the following document repositories:

Hastings Public Library 7 Maple Avenue Hastings-on-Hudson, NY 10706 Mon - Wed: 9:30 - 8:30, Thur: 9:30 - 6:00, Sat: 9:30 - 5:00, Sun 1:00 - 5:00 Phone: (914) 478-3307 NYSDEC Region 3 Office 21 South Putt Corners Road New Paltz, NY 12561-1696 Attention: Michael Knipfing Monday – Friday: 8:30 – 4:30 Phone: (845) 256-3154

Village Clerk Municipal Offices 7 Maple Avenue Hastings on Hudson, NY 10706 Mon - Fri: 8:30 - 4:00 Phone:(914)478-3400

A public meeting was also conducted. At the meeting, the findings of the remedial investigation (RI) and the feasibility study (FS) were presented along with a summary of the proposed remedy. After the presentation, a question-and-answer period was held, during which verbal or written comments were

accepted on the proposed remedy.

Comments on the remedy received during the comment period are summarized and addressed in the responsiveness summary section of the ROD.

Receive Site Citizen Participation Information By Email

Please note that the Department's Division of Environmental Remediation (DER) is "going paperless" relative to citizen participation information. The ultimate goal is to distribute citizen participation information about contaminated sites electronically by way of county email listservs. Information will be distributed for all sites that are being investigated and cleaned up in a particular county under the State Superfund Program, Environmental Restoration Program, Brownfield Cleanup Program, Voluntary Cleanup Program, and Resource Conservation and Recovery Act Program. We encourage the public to sign up for one or more county listservs at http://www.dec.ny.gov/chemical/61092.html

SECTION 3: SITE DESCRIPTION AND HISTORY

Location: The site is located on approximately 28 acres along the Hastings-on-Hudson waterfront, separated from the village commercial district by railroad tracks. The site is bounded on the north and west by the Hudson River and to the south by the Tappan Terminal site. A former marina borders the site to the north.

Site Features: Most of the site is covered by pavement or concrete building slabs. One building remains at the site (Building 52). The shoreline consists of areas of loosely-placed rip rap and concrete rubble in the north and decaying wooden bulkheads, docks and piers in the central area. Two former boat slips are present along the waterfront, both of which have filled in to a shallow depth with naturally-deposited sediment. The shoreline south of the South Boat Slip consists of modern steel sheeting.

Current Zoning and Uses: The site is zoned general industrial, and is the subject of planning studies by the Village of Hastings-on-Hudson. Several temporary trailers are in use for security and remedial activities.

Historic Uses: The site is the former Anaconda Wire and Cable Company, which ceased operations in 1974. Wire manufacturing operations during a portion of the operating period caused the release of PCBs and metals to site soil, groundwater and sediments. A site investigation was performed in 1986-87 in connection with a potential real estate development. This investigation led to the discovery of high levels of PCBs beneath the northwest corner of the site.

Operable Units: The site is divided into two operable units. An operable unit represents a portion of a remedial program for a site that for technical or administrative reasons can be addressed separately to investigate, eliminate or mitigate a release, threat of release or exposure pathway resulting from the site contamination. Operable Unit 1 (OU1) is the on-site soils area west of the railroad tracks. OU2 is the off-site impacts to the Hudson River.

Site Geology and Hydrogeology: The landmass of the property was constructed by placement of fill material into the Hudson River until the early 1900s. This fill material is approximately 10-20 feet thick along the railroad tracks, and 20-40 feet thick along the river. Beneath the fill layer lies the Marine Silt,

which is a structurally weak clayey silt material that is approximately 40 feet thick along the shoreline. Beneath the Marine Silt lies the Basal Sand unit, a very dense sand and gravel material, into which all structural piles for site buildings were placed. Groundwater is approximately 2 to 8 feet below ground surface in the fill material, and is influenced by tidal variation. Groundwater in the Basal Sand unit is confined by the Marine Silt unit and is present in an artesian condition. The shoreline shows signs of historical erosion due to storm events and wave action. Low-lying parts of the site have been flooded during larger storms.

Operable Unit (OU) Number 01 is the subject of this document.

A Record of Decision was issued previously for OU 01 in March 2004.

A site location map is attached as Figure 1.

SECTION 4: LAND USE AND PHYSICAL SETTING

The Department may consider the current, intended, and reasonably anticipated future land use of the site and its surroundings when evaluating a remedy for soil remediation. For this site, alternatives (or an alternative) that restrict(s) the use of the site to restricted residential use as described in Part 375-1.8(g) are/is being evaluated in addition to an alternative which would allow for restricted use of the site.

SECTION 5: ENFORCEMENT STATUS

Potentially Responsible Parties (PRPs) are those who may be legally liable for contamination at a site. This may include past or present owners and operators, waste generators, and haulers.

The Department and ARCO entered into Consent Orders in 1995 and March 2005. These Orders obligate ARCO to implement a RI/FS and RD/RA for OU1.

SECTION 6: SITE CONTAMINATION

6.1: <u>Summary of the Remedial Investigation</u>

A Remedial Investigation (RI) has been conducted. The purpose of the RI was to define the nature and extent of any contamination resulting from previous activities at the site. The field activities and findings of the investigation are described in the RI Report.

The following general activities are conducted during an RI:

- Research of historical information,
- Geophysical survey to determine the lateral extent of wastes,
- Test pits, soil borings, and monitoring well installations,
- Sampling of waste, surface and subsurface soils, groundwater, and soil vapor,

- Sampling of surface water and sediment,
- Ecological and Human Health Exposure Assessments.

6.1.1: Standards, Criteria, and Guidance (SCGs)

The remedy must conform to promulgated standards and criteria that are directly applicable or that are relevant and appropriate. The selection of a remedy must also take into consideration guidance, as appropriate. Standards, Criteria and Guidance are hereafter called SCGs.

To determine whether the contaminants identified in various media are present at levels of concern, the data from the RI were compared to media-specific SCGs. The Department has developed SCGs for groundwater, surface water, sediments, and soil. The NYSDOH has developed SCGs for drinking water and soil vapor intrusion. The tables found in the March 2004 ROD for OU1, which is included as Exhibit A, list the applicable SCGs in the footnotes. For а full listing of all SCGs see: http://www.dec.ny.gov/regulations/61794.html

6.1.2: <u>RI Information</u>

The analytical data collected on this site includes data for:

- groundwater
- surface water
- soil
- sediment
- surface soil

The data have identified contaminants of concern. A "contaminant of concern" is a hazardous waste that is sufficiently present in frequency and concentration in the environment to require evaluation for remedial action. Not all contaminants identified on the property are contaminants of concern. The nature and extent of contamination and environmental media requiring action are summarized in March 2004 ROD for OU1 which is included as Exhibit A. Additionally, the RI Report contains a full discussion of the data. The contaminant(s) of concern identified for this Operable Unit at this site is/are:

polychlorinated biphenyls (PCB)	lead
copper	zinc
beryllium	

As illustrated in the original 2004 ROD for OU1 of this site, the contaminant(s) of concern exceed the applicable SCGs for:

soil groundwater

Since the issuance of the Feasibility Study (FS) and ROD, significant new information about the site has

been obtained. The most significant finding is the presence of separate phase PCB material, including liquid PCB Material or DNAPL, beneath Northwest Corner of the site, and along the alignment of the sheet pile wall specified in the original 2004 OU1 ROD. The extent of separate phase PCB is shown in Figure 3.

6.3: <u>Summary of Human Exposure Pathways</u>

This human exposure assessment identifies ways in which people may be exposed to site-related contaminants. Chemicals can enter the body through three major pathways (breathing, touching or swallowing). This is referred to as *exposure*.

For OU-1: The site is completely fenced, which restricts public access. Some contaminated soils remain at the site below concrete and/or clean fill; therefore, people will not come in contact with contaminated soil unless they dig below the surface materials. Contaminated groundwater at the site is not used for drinking or other purposes as the site is served by a public water supply that obtains water from a different source not affected by this contamination. For OU-2: People using the river for recreational purposes such as swimming and boating may come into direct contact with site related contaminants. The river is not a source of potable water in this area. People may come in contact with contaminants present in shallow sediment while entering and exiting the river. Fish in the river are likely to contain the same contaminants that are present in surface water and sediment; therefore, people who consume fish from the river are likely to be consuming these contaminants as well. For specific advisories on fish consumption in this area please refer to NYSDOH's Health Advise on Eating Sportfish and Game. http://www.health.ny.gov/environmental/outdoors/fish/health_advisories/docs/advisory_booklet_2011.p df

6.4: <u>Summary of Environmental Assessment</u>

This section summarizes the assessment of existing and potential future environmental impacts presented by the site. Environmental impacts may include existing and potential future exposure pathways to fish and wildlife receptors, wetlands, groundwater resources, and surface water.

The Fish and Wildlife Resources Impact Analysis (FWRIA) for OU 01, which is included in the RI report, presents a detailed discussion of the existing and potential impacts from the site to fish and wildlife receptors.

The primary contaminants of concern for the site are PCBs (Aroclors 1260 and 1262) and metals, including copper, lead, and zinc from historic wire manufacturing operations. For OU1, soil and groundwater beneath the site are contaminated with PCBs and metals, including beryllium, above standards, criteria and guidance values. For OU2, PCBs and metals have also contaminated Hudson River surface water and sediments, and site-related PCBs have been detected in resident fish.

The site presents a significant environmental threat due to ongoing releases from contaminated soils and/or sediments to groundwater, surface water and the Hudson River ecosystem. Metals in sediment pose a toxicity threat to benthic organisms, and PCBs in sediment pose a toxicity and bioaccumulation threat to fish and wildlife.

SECTION 7: SUMMARY OF ORIGINAL REMEDY AND ROD AMENDMENT

7.1 Original Remedy

In the March 2004 ROD for OU1 the NYSDEC selected partial excavation, long-term containment, and deed restrictions. The components of the original remedy were as follows:

- Excavation and off-site disposal of PCB-contaminated soil to a maximum depth of 9 feet in the Northwest Corner and along the Northern Shoreline of the site;
- Containment of remaining deep contamination in the Northwest Corner and Northern Shoreline areas using a slurry wall, sealed sheet pile bulkhead, and an impermeable cap;
- Outside of the Northwest Corner and Northern Shoreline containment areas, excavation, to a maximum depth of 12 feet, of all PCB-contaminated soil. For the few areas where PCB contamination exceeds 12 feet, soil would either be excavated by alternative methods, or contained within a watertight sheet pile structure and capped;
- Excavation of lead "hot spots" in shallow soils, corresponding to lead levels between 2,160 ppm and 43,200 ppm;
- Installation of a watertight steel sheet pile bulkhead along the site shoreline;
- Installation of a 2-foot thick barrier system, consisting of a demarcation layer and soil cover over areas not covered by an impermeable cap;
- Institutional controls to prevent exposure to contaminated soils and groundwater beneath the site, and to preserve the integrity of the cover system and containment cells;
- Annual certification that the institutional controls are in place and effective; and
- Long term monitoring.

7.2 New Information

Since the issuance of the FS and ROD, significant new information about the site has been obtained. The most significant finding is the presence of liquid PCB material beneath the Northwest Corner of the site in close proximity to the Hudson River, and along the alignment of the sheet pile wall specified in the original 2004 OU1 ROD. Sheet piles cannot be driven through this material without dragging down or creating a conduit for migration of PCBs into the underlying aquifer. In addition, environmental and geotechnical investigations conducted for OU2 led to a better understanding of the relationship between the OU2 alternatives under consideration and the remedy for OU1. Geotechnical evaluations conducted for OU2 determined that the full extent of contamination beneath the river could not be removed without destabilizing the Northwest Corner in close proximity to the river in this area, the original alignment of the sheet pile wall would not have fully contained this PCB Material. Also, pilot tests conducted on both vertical and angled wells have determined that recovery of PCB DNAPL is feasible. An evaluation of groundwater

treatment technologies has determined that the low level of PCBs dissolved in groundwater can be feasibly removed by a system of adsorptive panels or canisters installed in the containment wall. With new options for removing PCB DNAPL and treating dissolved contamination, certain elements of the fully-enclosed containment system, the upgradient slurry wall and impermeable membrane, are no longer needed. Therefore, based on the new information submitted, and the need to integrate the proposed remedy for OU2, the Department is amending the ROD for Operable Unit No. 1 at the Harbor at Hastings Site.

7.3 Selected Changes

The selected changes include:

- The alignment of the sheet pile wall, which previously would have followed the existing shoreline, will extend into the Hudson River to provide containment and allow for the recovery of PCB DNAPL located beneath the sediment in this area. The containment element for the northwest on-site contamination (formerly identified as the Northwest Corner and Northern Shoreline Area) will be modified to include recovery of DNAPL; containment of DNAPL by a sheet pile wall with sealed joints installed along the new shoreline alignment; and treatment of groundwater to remove PCBs.
- The proposed change to the shoreline protection component of the remedy is the installation of either a steel bulkhead or an engineered slope along the shoreline in areas which do not require containment of separate phase PCB material. This change allows the flexibility of using the engineered slope instead of the steel bulkhead in areas that do not require PCB containment. In addition to protecting the shoreline, the engineered slope will be designed to prevent the migration of contaminated soil particles into the Hudson River.
- Construction and operation of a recovery system for PCB DNAPL, consisting of a series of vertical and angled wells and an active pumping system to remove fluid PCB material as it collects.
- The outfalls and associated pipe bedding from Building 52 will be excavated, sampled and removed or decommissioned as approved by the Department.

SECTION 8: EVALUATION OF PROPOSED CHANGES

8.1 Remedial Goals

Goals for the cleanup of the site were established in the original ROD. The goals selected for this site are:

- Reduce, control, or eliminate to the extent practicable the contamination present within the soils and fill on site, and thereby eliminate the significant threat posed by the presence of hazardous wastes at the site.
- Eliminate the potential for direct human or animal contact with the contaminated soils or groundwater on site.
- Eliminate the threat to surface waters and sediments by eliminating surface run-off and subsurface releases of fill from the site.

- Eliminate, to the extent practicable, the migration of PCBs, metals and other contaminants into the Hudson River by surface and subsurface erosion of contaminated soils, transport of contaminated groundwater, and migration of PCBs in both elastic material and petroleum phases.
- Prevent, to the extent possible, migration of contaminants at the site to groundwater and surface water.

Further, the remediation goals for the site include attaining to the extent practicable:

• Provide for attainment of SCGs for groundwater quality at the limits of the site.

8.2 Evaluation Criteria

The criteria used to compare the remedial alternatives are defined in the regulation that directs the remediation of inactive hazardous waste sites in New York State (6 NYCRR Part 375). For each criterion, a brief description is provided. A detailed discussion of the evaluation criteria and comparative analysis is contained in the original Feasibility Study.

The first two evaluation criteria are called threshold criteria and must be satisfied in order for an alternative to be considered for selection.

1. Protection of Human Health and the Environment. This criterion is an overall evaluation of each alternative's ability to protect public health and the environment.

The selected ROD amendment remedy will be more protective of human health and the environment when compared to the original remedy. The revised sheet pile wall alignment in the Northwest Corner provides better overall protection of human health and the environment than the original alignment by more effectively containing PCB DNAPL; enhancing PCB DNAPL recovery options; and preventing PCB contaminated groundwater from entering the Hudson River. It provides better containment of the PCB source area when compared to the original remedy based on the new information regarding the nature and extent of PCB DNAPL. Groundwater treatment will be equally protective of the environment and will be monitored.

2. Compliance with New York State Standards, Criteria, and Guidance (SCGs). Compliance with SCGs addresses whether a remedy will meet environmental laws, regulations, and other standards and criteria. In addition, this criterion includes the consideration of guidance which the Department has determined to be applicable on a case-specific basis.

The most important SCGs of concern are the ambient groundwater and surface water standards (6NYCRR Parts 700-705) and the 6NYCRR Part 375 Soil Cleanup Objectives (SCOs) for PCBs. The installation of the sheet pile wall creates a barrier to the groundwater flow to the river and allows collection and treatment of groundwater and DNAPL in the northwest extension area of the site. The engineered sloped shoreline will also prevent the discharge of particles in the historic fill to the Hudson River, which will be equivalent to the original remedy in the areas of the site where separate phase PCB material is not a concern. The provision for an engineered sloped shoreline is also consistent with recent Department shoreline protection guidance,

issued in 2007, which identifies a hierarchy of approaches to be used for shore line stabilizations, with preference given to biotechnical approaches over vertical sheet pile bulkheads, where feasible and appropriate. The removal of the former outfalls and pipe bedding from Building 52 will remove additional PCB source areas which may contribute to exceedances of the ambient groundwater standards. The proposed amendment will fully contain the PCB DNAPL which provides the best option for source control of the PCB DNAPL.

The revised sheet pile alignment will need to address the SCGs found in 6NYCRR Part 608 and Environmental Conservation Law Article 15 due to the proposed filling into the Hudson River. This requirement will address the associated filling of approximately 0.88 acres of the Hudson River. Mitigation will be necessary for placement of fill in any river areas which raises the existing sediment grade. The filling activities will be mitigated through the creation of new wetlands areas or improvement of degraded wetlands.

The next five "primary balancing criteria" are used to compare the positive and negative aspects of each of the remedial strategies.

3. Short-term Effectiveness. The potential short-term adverse impacts of the remedial action upon the community, the workers, and the environment during the construction and/or implementation are evaluated. The length of time needed to achieve the remedial objectives is also estimated and compared against the other alternatives.

The short-term impacts of vehicle traffic, contaminated material excavation and handling, and soil backfill will represent noise, dust and emission concerns which will need to be controlled with health and safety plans and engineering controls. The proposed changes represent a decrease in short term impacts due to the generation of less noise and disturbance to the community and the river due to a reduced length of sheet pile wall installation. The short term impacts due to the excavation volume, potential odors, truck traffic and project duration will be equivalent to the original remedy. However, routine procedures will be used to monitor and mitigate odor and dust resulting from the construction activities.

4. Long-term Effectiveness and Permanence. This criterion evaluates the long-term effectiveness of the remedial alternatives after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items are evaluated: 1) the magnitude of the remaining risks, 2) the adequacy of the engineering and/or institutional controls intended to limit the risk, and 3) the reliability of these controls.

The revised sheet pile wall alignment will provide a higher degree of long-term effectiveness than the original location which would have passed through the PCB DNAPL and PCB material. The PCB DNAPL in the Northwest Corner Area will be contained, collected from the new land area created within the Hudson River, and properly disposed off-site.

Both the original remedy and the selected change will require monitoring of the groundwater. The risk associated with the potential release of contaminated groundwater under the selected alternative will be equivalent to the original remedy.

The time needed to achieve compliance with groundwater SCGs across the site is expected to be equivalent

for the amended remedy due to the depth of excavation of PCB contaminated soil.

5. Reduction of Toxicity, Mobility or Volume. Preference is given to alternatives that permanently and significantly reduce the toxicity, mobility or volume of the wastes at the site.

The selected amendment will create a barrier and remove PCB DNAPL for off-site disposal, which will provide a permanent reduction in volume. Similarly, PCBs dissolved in groundwater will be removed by a passive recovery system, avoiding the potential for discharge into the river. By comparison, the remedy selected in the 2004 ROD would have relied more heavily on containment, and may not have reduced the volume through treatment. New information indicates, the original remedy may have increased the potential mobility of PCB DNAPL contamination by driving the sheets through the DNAPL along the shoreline which could have created a pathway into uncontaminated zones. The selected amendment will reduce the mobility of this contamination by creating a barrier beyond the known limits of contamination, and allowing further delineation and recovery in the Northwest Extension Area. The amended remedy will therefore provide a greater reduction in mobility of PCBs than the original remedy.

6. Implementability. The technical feasibility and administrative feasibility of implementing each alternative are evaluated. Technical feasibility includes the difficulties associated with the construction of the remedy and the ability to monitor its effectiveness. For administrative feasibility, the availability of the necessary personnel and materials is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, institutional controls, and so forth.

The selected amendment and original remedy pose different implementability challenges at this site. The selected modification of the sheet pile wall alignment is more technically implementable in comparison to the original remedy because it will avoid the known area of PCB DNAPL and will not result in the potential destabilization of the shoreline during pre-clearing of the rip-rap at the shoreline. The modified alignment will also avoid creating or causing a pathway for PCB migration of the newly identified PCB DNAPL in the subsurface along the wall alignment into deeper uncontaminated zones. Administratively, the construction of the sheet pile wall further out into the Hudson River may be more difficult because it will require permits and approval from the United States Army Corps of Engineers and approval of a wetlands mitigation plan. Installation of groundwater treatment at the shoreline instead of construction of a slurry wall and impermeable cover is more readily implementable.

7. Cost-Effectiveness. Capital costs and annual operation, maintenance, and monitoring costs are estimated for each alternative and compared on a present worth basis. Although cost-effectiveness is the last balancing criterion evaluated, where two or more alternatives have met the requirements of the other criteria, it can be used as the basis for the final decision.

The estimated present worth cost to carry out the amended remedy is \$163,000,000, including annual costs for 30 years. The estimated present worth to complete the original remedy was \$63,000,000 including annual costs for 30 years. The cost to construct the amended remedy is estimated to be \$155,000,000 and the estimated average annual cost is \$271,000 per year for 30 years.

The costs are significantly different between the original remedy and amended remedy because the new information obtained during the 50 percent design and subsequent work has been used to update the cost

estimate from the original Feasibility Study. The major changes in cost include updated pricing, additional scope items identified during the 50 percent design process, an allowance for work associated with Building 52, a modified approach to shore stabilization, the DNAPL extraction system and the relocation of existing utilities.

Shore stabilization was included in the original OU-1 remedy cost; however, the costs for the new sheet pile wall which extends into the Hudson River (estimated to be approximately \$36,000,000) are now included in the OU-2 cost estimate and therefore not included in the OU-1 amended remedy estimate.

This final criterion is considered a modifying criterion and is considered after evaluating those above. It is focused upon after public comments on the proposed ROD amendment have been received.

8. Community Acceptance. Concerns of the community regarding the proposed changes have been evaluated. A responsiveness summary was prepared that presents the public comments received and the manner in which the Department addressed the concerns raised.

SECTION 9: SUMMARY OF ROD AMENDMENT

The Department has amended the Record of Decision (ROD) for the Harbor at Hastings Site OU1. The estimated present worth cost to carry out the amended OU1 remedy is \$163,000,000. The estimated present worth to complete the original remedy was \$63,000,000. The cost to construct the amended remedy is estimated to be \$155,000,000 and the estimated average annual cost for 30 years is \$271,000.

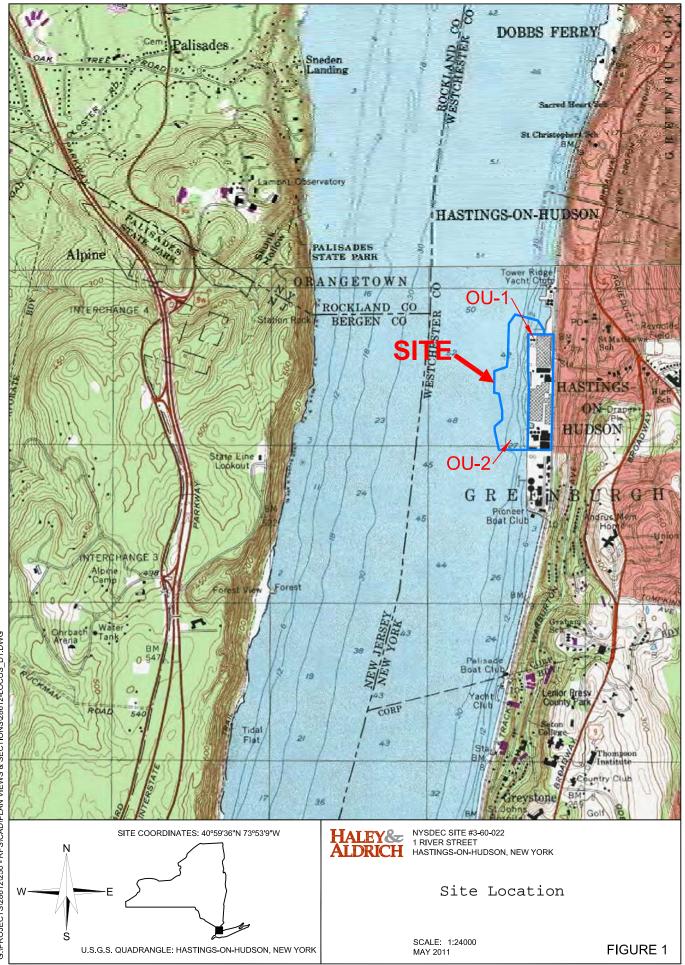
The elements of the amended remedy listed below are identified as unchanged, modified or new when compared to the original 2004 ROD:

- 1. A remedial design program to verify the components of the conceptual design and provide the details necessary for the construction, operation and maintenance, and monitoring of the remedial program. Green remediation principals and techniques will be implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31. The major green remediation components are as follows:
 - Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
 - Reducing direct and indirect greenhouse gas and other emissions;
 - Increasing energy efficiency and minimizing use of non-renewable energy;
 - Conserving and efficiently managing resources and materials;
 - Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste;
 - Maximizing habitat value and creating habitat when possible;
 - Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals; and
 - Integrating the remedy with the end use where possible and encouraging green and sustainable redevelopment (modified)
- 2. At the Northwest Corner of the site and along the Northern Shoreline, excavation of surface soil (0-

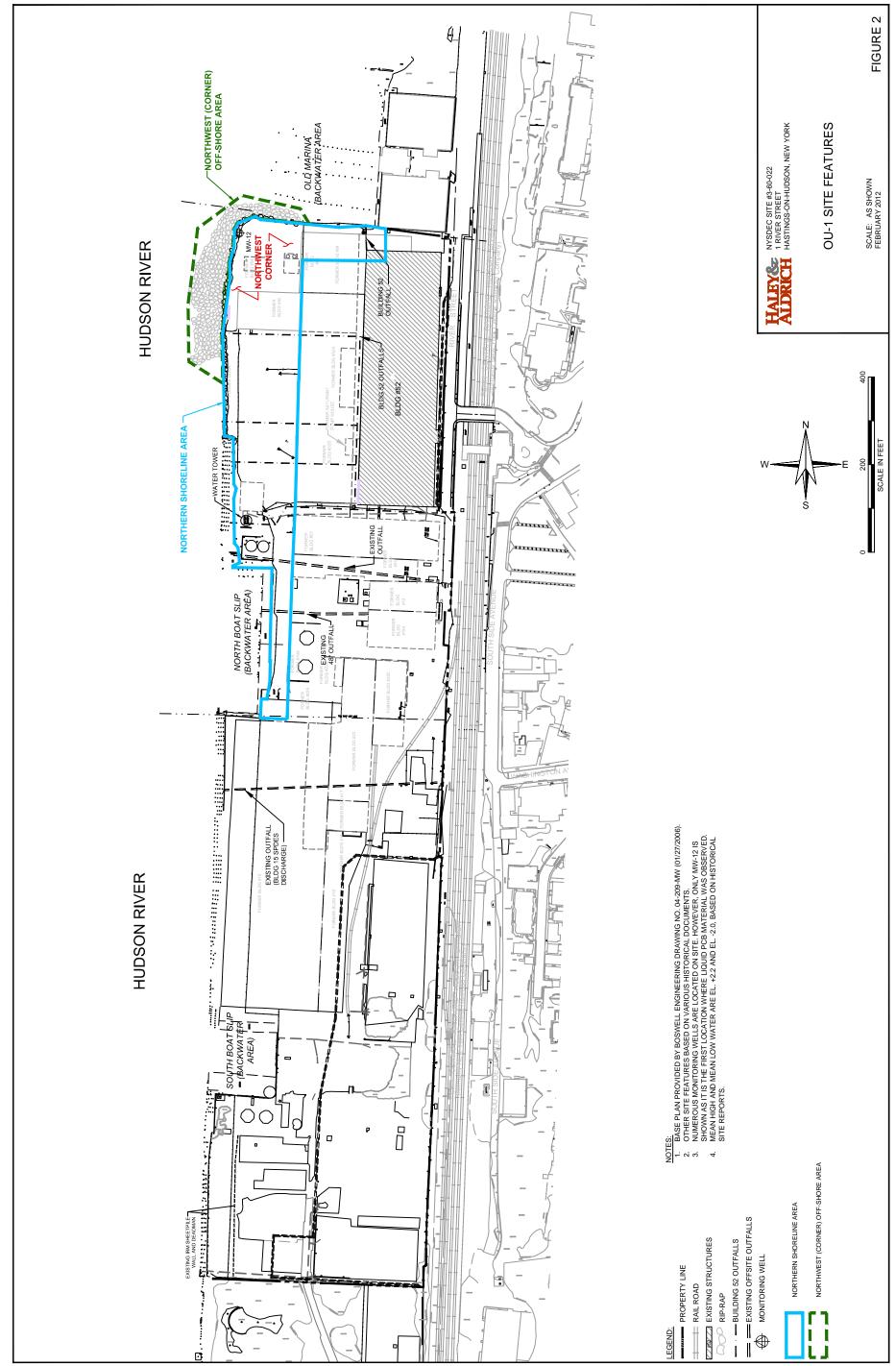
12 inches) containing greater than 1ppm PCB and subsurface soil containing greater than 10 ppm PCB to a maximum depth of 9 feet. Outside of the Northwest Corner and the Northern Shoreline areas, excavation of surface soil (0-12 inches) containing greater than 1ppm PCB and subsurface soil containing greater than 10 ppm PCB, to a maximum depth of 12 feet. (modified)

- 3. Outfalls and associated pipe bedding from Building 52 that are potential PCB source areas will be excavated, sampled and removed, or decommissioned as approved by the Department. (new)
- 4. Excavation of shallow soils from the southern portion of the site that are identified as "lead hotspots". These correspond to lead levels between 2,160 ppm and 43,200 ppm. (unchanged)
- 5. In conjunction with OU2, installation of a sheet pile wall within the Hudson River to provide containment and allow for the recovery of PCB DNAPL onshore and offshore of the northwest corner of the site. The location and alignment of the proposed sheet pile wall will be verified during the remedial design to minimize filling into the Hudson River. The area behind the sheet pile wall will be filled with soil and/or lightweight aggregate as approved by the Department. The sheet pile wall will include sealed joints, installation of tie-rods, upland anchors, and cathodic protection. The wall system will also include groundwater filtration units to adsorb contaminants that may be present in groundwater discharging to the river. (new)
- 6. The shoreline south of the northwest area, will either be a steel bulkhead or construction of a sloped shoreline cover system. The sloped shoreline cover system will be designed and constructed such that no additional fill material will be placed into the Hudson River, and will require the removal of sediment or fill below the current sediment or water elevation for placement of a cover system. The sloped shoreline cover system will be designed with the following layers: an isolation layer of soil or geotextile designed to prevent the migration of contaminated soil particles into the Hudson River; an erosion protection layer; and a habitat/surface substrate layer. The habitat/surface substrate layer will be designed to restore aquatic, intertidal and stream bank habitats while taking into account erosional forces, such as waves and currents. (new)
- 7. Construction and operation of a recovery system for PCB DNAPL, consisting of a series of wells and an active pumping system to remove fluid PCB material as it collects. (new)
- 8. A site cover will be required to allow for restricted residential use of the site. The cover will consist either of the structures such as buildings, pavement, sidewalks comprising the site development or a soil cover in areas where the upper two feet of exposed surface soil will exceed the applicable soil cleanup objectives (SCOs). However, pile-supported structures will not be permitted in any areas where PCB material is potentially present. Where the soil cover is required, it will be a minimum of two feet of soil, meeting the SCOs for cover material as set forth in 6 NYCRR Part 375-6.7(d) for restricted residential use. The soil cover will be placed over a demarcation layer, with the upper six inches of the soil of sufficient quality to maintain a vegetation layer with appropriate natural species. (modified)
- 9. Imposition of an institutional control in the form of an environmental easement for the controlled property, that will:

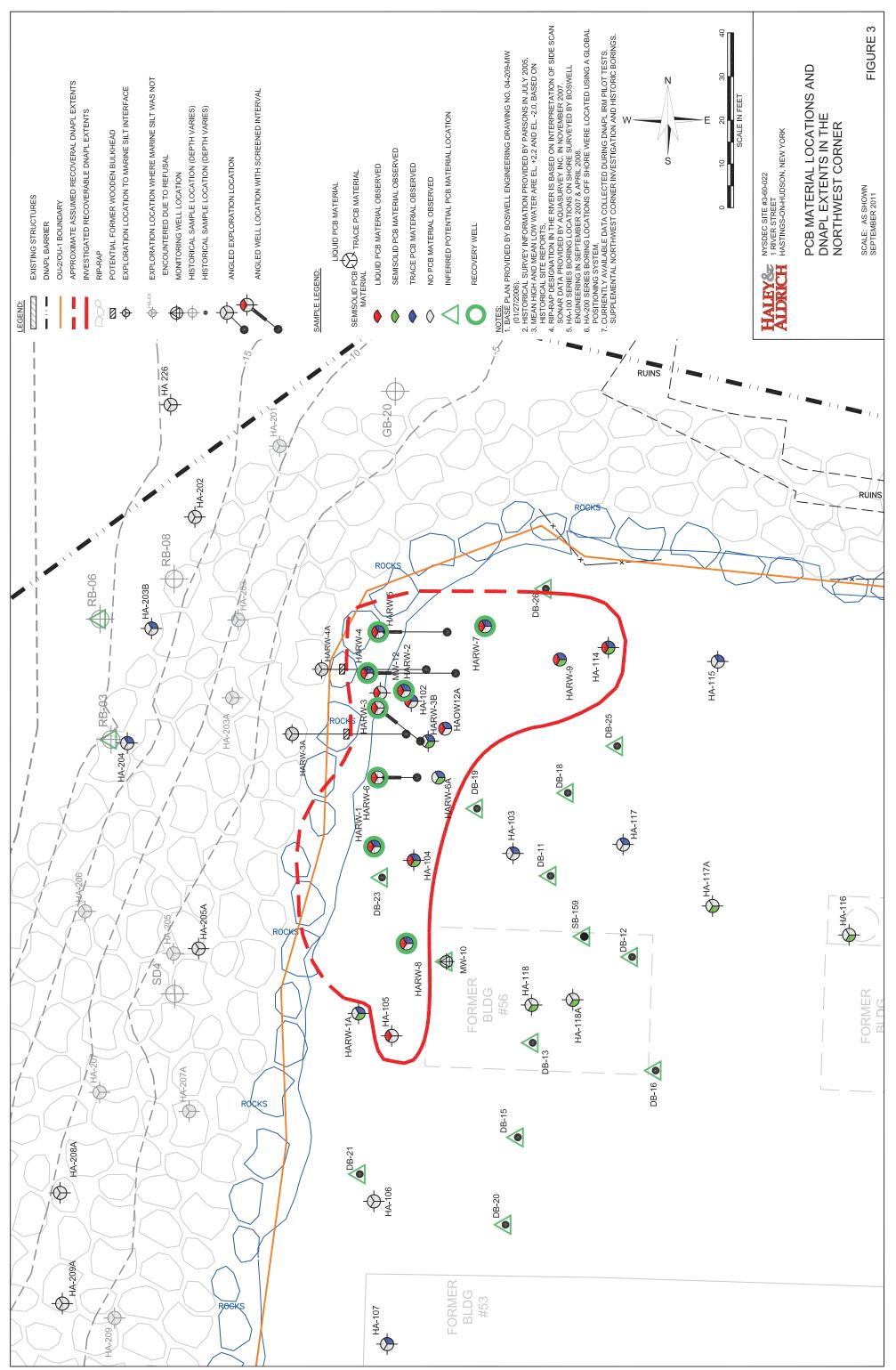
- a. require the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8(h)(3);
- b. allow the use and development of the controlled property for restricted-residential, uses as defined by Part 375-1.8(g) which are consistent with the remedial elements, although land use is subject to local zoning laws;
- c. restrict the use of groundwater and/or surface water as a source of potable or process water, without necessary water quality treatment as determined by the Department, NYSDOH or Westchester County DOH;
- d. prohibit agriculture or vegetable gardens on the controlled property with the exception of community gardens with the approval of the Department; and
- e. require compliance with the Department approved Site Management Plan. (new)
- 10. A Site Management Plan will be required, which includes the following:
 - a. an Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective:

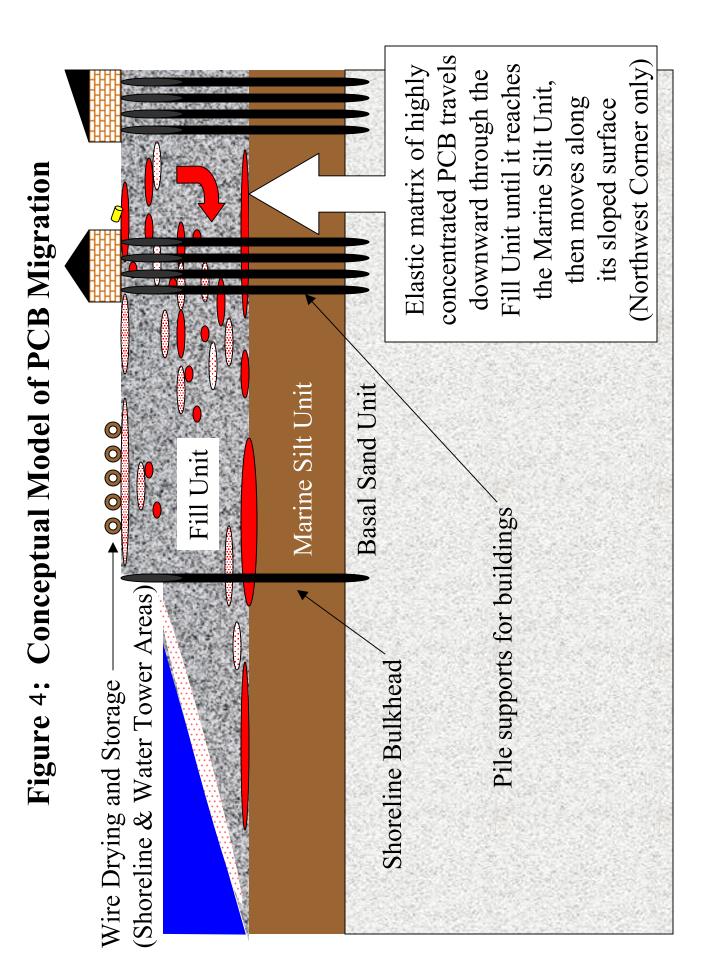

Institutional Controls: The Environmental Easement discussed in Paragraph 9 above.

Engineering Controls: The soil cover discussed in Paragraph 8; groundwater treatment system; and PCB DNAPL recovery system.


This plan includes, but may not be limited to:

- i. an Excavation and Sediment Management Plan which details the provisions for management of future excavations in areas of remaining contamination;
- ii. descriptions of the provisions of the environmental easement including any land use, groundwater and/or surface water use restrictions, which include a prohibition on pile supported structures over areas with PCB material;
- iii. provisions for the management and inspection of the identified engineering controls;
- iv. maintaining site access controls and Department notification; and
- v. the steps necessary for the periodic reviews and certification of the institutional and engineering controls.
- b. a Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to:


- i. monitoring groundwater quality and elevation to assess the performance and effectiveness of the remedy;
- ii. soil cover system inspection and maintenance as necessary to ensure its function is not impaired by erosion or activities at the site;
- iii. shore protection system (sheet pile and sloped areas) will be periodically monitored for erosion, corrosion, damage or deterioration; shoreline elevation; and
- iv. a schedule of monitoring and frequency of submittals to the Department;
- c. an Operation and Maintenance Plan to ensure continued operation, maintenance, monitoring, inspection, and reporting of for any mechanical or physical components of the remedy. The plan includes, but is not limited to:
 - i. compliance monitoring of treatment systems to ensure proper O&M as well as providing the data for any necessary permit or permit equivalent reporting;
 - ii. maintaining site access controls and Department notification; and
 - iii. providing the Department access to the site and O&M records (modified)



G:/PROJECTS/28612/265 - FINAL RFS/CAD/FINAL PLAN VIEWS AND SECTIONS/28612-250-RFS OU-1 EXCAVATION_D2.DWG

G/PROJECTS/28612/250 - RFS/COMMUNICATIONS/2011-09-29 DEC FIGURE/28612-PCB MATERIAL EXTENTS_DF.DWG

APPENDIX A

Responsiveness Summary

RESPONSIVENESS SUMMARY

Harbor at Hastings Operable Units No. 1 and 2 State Superfund Project Village of Hastings on Hudson, Westchester County, New York Site No. 360022

The Proposed Remedial Action Plan (PRAP) for the Harbor at Hastings site, was prepared by the New York State Department of Environmental Conservation (the Department) in consultation with the New York State Department of Health (NYSDOH) and was issued to the document repositories on January 2012. The PRAP outlined the remedial measure proposed for the contaminated soil, sediment, surface water, groundwater at the Harbor at Hastings site.

The release of the PRAP was announced by sending a notice to the public contact list, informing the public of the opportunity to comment on the proposed remedy.

A public meeting was held on January 26, 2012, which included a presentation of the remedial investigation and feasibility study (RI/FS) for the Harbor at Hastings as well as a discussion of the proposed remedy. The meeting provided an opportunity for citizens to discuss their concerns, ask questions and comment on the proposed remedy. These comments have become part of the Administrative Record for this site. The public comment period was to have ended on February 10, 2012, however it was extended to March 12, 2012, at the request of the public.

This responsiveness summary responds to all questions and comments raised during the public comment period. The following are the comments received, with the Department's responses:

- COMMENT 1: Justification of the 1ppm PCB cleanup goal for soils should be provided through risk assessment modeling.
- RESPONSE 1: The 1 ppm soil cleanup objective (SCO) is set forth in 6 NYCRR 375-6.8, and this SCO is protective for residential and ecological resources as well as the future intended use of the site for restricted-residential. The 1 ppm SCO was adopted from EPA and was based on risk management considerations for high occupancy scenarios as described in section 6 of the Development of Soil Cleanup Objectives Technical Support Document, September 2006, which may be found at http://www.dec.ny.gov/chemical/34189.html
- COMMENT 2: What are the health hazards of the proposed sediment processing operation?
- RESPONSE 2: The NYSDEC and NYSDOH pay close attention to the quality of life for the surrounding community during all parts of the remedial work at a site, including the sediment processing portion of the cleanup. All concerns will

be addressed whether it is noise, odor or dust migration in a manner that will monitor and minimize any release or potential for exposure. See response number 11 for CAMP details. Monitoring and other appropriate engineering controls will be in place to assure no hazards result from this or any other operations required to implement the selected remedy.

- COMMENT 3: Will BP/ARCO reimburse the State for its costs?
- RESPONSE 3: Yes, reimbursement of New York State costs is expected as part of the consent order negotiated with BP/ARCO, the responsible party.
- COMMENT 4: Has soil beneath Building 52 been sampled to determine if contamination is beneath it?
- RESPONSE 4: Yes the soil beneath Building 52 was sampled and characterized to determine the levels of contaminants below the building.
- COMMENT 5: How much semi-solid PCBs are present beneath the river?
- RESPONSE 5: The presence of semi-solid PCB has been identified in the areas shown on Figure 3 of the ROD. The full extent and amount of semi-solid PCBs present beneath the river has been difficult to estimate due to the difficulty in installing borings and sampling the area immediately offshore of the Northwest Corner. This area was not extensively sampled because the equipment needed to penetrate the rip rap could not access areas of shallow water under current conditions.
- COMMENT 6: Is it safe to use Kinnally Cove for recreational wading in the water and sediments due to potential contamination?
- RESPONSE 6: Yes, Kinnally Cove may be used for recreational wading in the water with respect to the contamination associated with the site. Sediments in Kinnally Cove were sampled for PCBs by the Department in 2001, the range of concentrations detected were 0.088 and 1.5 ppm of total PCBs.
- COMMENT 7: Will the proposed Northwest extension include cathodic protection of the steel sheeting?
- RESPONSE 7: Yes the Northwest extension will include cathodic protection of the steel sheeting.
- COMMENT 8: There is concern for sea level rise greater than predicted by the USACE. The remedy needs to add additional rip rap and foundation to accommodate the potential rise in sea level.

- RESPONSE 8: The remedial design will include design considerations which take into account estimated sea level changes. Shore protection will be designed to prevent erosion of the shore due to the action of wind, waves and other forces to prevent damage to on-shore development or potential exposure and subsequent transport of contaminated soils.
- COMMENT 9: We support the proposed restricted residential use of the site.
- RESPONSE 9: Comment noted.
- COMMENT 10: What is the scientific basis for the two-foot cover system for restricted residential use of the site?
- RESPONSE 10: The basis for the 2 foot cover system is 6NYCRR Part 375, and the associated 2006 Technical Support Document, which may be found at <u>http://www.dec.ny.gov/chemical/34189.html</u>
- COMMENT 11: When the CAMP is developed, we are concerned for using the standard particulate action level as a proxy for airborne PCBs. Before construction begins, the community needs a presentation of how the action level for PCBs is developed as part of the CAMP.
- RESPONSE 11: In the remedial design phase a site specific Community Air Monitoring Plan (CAMP) will be developed which will specify the action levels for dust, volatile organic compounds and PCBs. Before implementation of the remedy a public meeting will be held and will explain in further detail how the CAMP will be protective of the community.
- COMMENT 12: The green remediation elements of the PRAP are too vague. More specific requirements should be stated to minimize construction impacts to Village. These include requirements for barge and/or train transport of contaminated and clean soil, filtered diesel emissions, use of ultra low sulfur diesel fuels and Tier 3 diesel emission standards.
- RESPONSE 12: The green remediation elements presented are there to acknowledge the DEC's commitment to green remediation, specific green remediation elements will be identified in the remedial design. The goal will be to minimize construction impacts to the Village to the extent feasible while implementing the remedy.
- COMMENT 13: Will the two foot soil cover be able to be breached to construct building foundations?
- RESPONSE 13: In areas where building will be permitted, the two foot soil cover may be disturbed provided the requirements included in the approved Site Management Plan are followed.

- COMMENT 14: The annual cost of the two-foot cover system is underestimated because it does not include the additional cost for implementing the Site Management Plan during development.
- RESPONSE 14: The annual cost does not factor in the costs for development, since these are beyond the scope of this ROD.
- COMMENT 15: Who is responsible for the annual costs that are presented in the PRAP?
- RESPONSE 15: ARCO will be responsible for the annual operation and maintenance costs.
- COMMENT 16: What are potential health effects of other metals in the sediment, such as nickel, mercury and arsenic?
- RESPONSE 16: In order to have health effects from metals present in the sediment there first has to be direct contact with these contaminants. Presented below are potential health effects if exposure occurred and at high concentrations.

Nickel: The most common reaction is a skin rash at the site of contact. The skin rash may also occur at a site away from the site of contact. Less frequently, some people who are sensitive to nickel have asthma attacks following exposure to nickel. Some sensitized people react when they consume food or water containing nickel or breathe dust containing it.

Mercury: Exposure to high levels of metallic, inorganic, or organic mercury can permanently damage the brain, kidneys, and developing fetus. Short-term exposure to high levels of metallic mercury vapors may cause effects including lung damage, nausea, vomiting, diarrhea, increases in blood pressure or heart rate, skin rashes, and eye irritation.

Arsenic: Breathing high levels of inorganic arsenic can give you a sore throat or irritated lungs. Ingesting very high levels of arsenic can result in death. Exposure to lower levels can cause nausea and vomiting, decreased production of red and white blood cells, abnormal heart rhythm, damage to blood vessels, and a sensation of "pins and needles" in hands and feet.

Additional information on these metals can be found on the Agency for Toxic Substances and Disease Registry's website. http://www.atsdr.cdc.gov/substances/index.asp

- COMMENT 17: Will there be any stipulated penalties in the Order on Consent to ensure compliance with the schedule for implementing the remedy?
- RESPONSE 17: Stipulated penalties will be subject to negotiations between ARCO and the Department concerning the OU2 Order on Consent. Note that Environmental

Conservation Law also provides for penalties for non-compliance with the terms and conditions of orders on consent.

- COMMENT 18: When will the remedial work start and end?
- RESPONSE 18: The remedial work will begin after an Order on Consent that includes the OU2 remedy is signed and the remedial design is completed. The public will be notified at important milestones. The Department anticipates the project will take approximately 5 years to complete.
- COMMENT 19: What are likely impacts upstream and downstream of the dredging project? We are concerned about this project harming the ongoing efforts to establish oyster beds just upstream of the site.
- RESPONSE 19: The impacts upstream and downstream from implementing the remedy are expected to be minimal as a result of the controls that will be in place. This is based on the nature of the contamination and knowledge gained at other sediment remedial projects. The majority of the dredging will be performed using silt curtains which will minimize resuspension from dredging. Monitoring will be performed to identify acceptable requirements to protect water quality in upstream and downstream locations. It is also our understanding of the proposal that the oyster beds are not intended for human consumption.
- COMMENT 20: The Department and/or ARCO should use additional outreach such as social media methods to keep residents apprised of the remedial progress and address concerns for airborne exposures during construction. Information should be disseminated in layman's terms using hubs in the Village such as coffee shops, the train platform, etc. as posting locations.
- RESPONSE 20: The Department has successfully used websites which provide weekly updates, construction status and daily monitoring, and will work with the PRP explore and implement a website or additional outreach to keep the community informed during the remedial design and construction.
- COMMENT 21: Is the proposed 2-foot cover consistent with the five foot cover that is required by the Village and Riverkeeper's Federal Consent Decree with ARCO?
- RESPONSE 21: The proposed 2-foot cover is consistent with the Village and Riverkeeper's Federal Consent Decree with ARCO.
- COMMENT 22: The Department should request and review ARCO's proposed lighting plan as part of the remedial design.
- RESPONSE 22: The need for extensive construction lighting will depend on the nature and schedule of the work to be performed. Decisions concerning work hours and

the need for supplemental lighting to safely conduct the work will be made in consultation with the Village of Hastings-on-Hudson.

- COMMENT 23: What is included in the proposed restricted residential use? Why are single family homes not permitted?
- RESPONSE 23: Restricted residential use is the land use category when there is to be common ownership or a single owner/managing entity for the site. Therefore apartment buildings, condominiums and recreational uses would be allowed that are managed by a single entity pursuant to a site management plan (SMP). It prohibits single family housing because managing and restricting the use of property would be more difficult, and could result in a greater possibility for individual owners and hired contractors to take actions not in conformance with the SMP. Furthermore, agriculture or vegetable gardens on the controlled property would be prohibited with the exception of community gardens with the approval of the Department.
- COMMENT 24: Where will additional sampling be conducted in pre-design? Not just in the Northwest Area.
- RESPONSE 24: Additional sediment sampling will be performed to identify depths of sediment contamination that will be removed in both nearshore and deepwater areas. Baseline monitoring will also be performed for the long-term monitoring plan to determine the pre-remedial conditions. The baseline monitoring plan will include sampling at background locations to determine ambient contaminant levels that are unrelated to the Harbor at Hastings site.
- COMMENT 25: Will the liquid PCB removal operation affect the ability to use the northwest corner and northwest extension area?
- RESPONSE 25: The remedial design will seek to minimize the impact of PCB recovery operations on the future use of the northwest extension area.
- COMMENT 26: Can some of the shoreline be used for deep water dock access?
- RESPONSE 26: The future use of portions of the shoreline for deep water dock access would need to be identified during the remedial design to assure the design takes this into account.
- COMMENT 27: Does the PRAP provide for financial assurance to ensure long term monitoring and maintenance of the remedy?
- RESPONSE 27: The PRAP and Record of Decision do not include financial assurance to ensure the long term monitoring and maintenance of the remedy. However, the Department has regulatory authority to require financial assurance, and could consider this option during the negotiation of the Order on Consent.

- COMMENT 28: What information and experience from the Upper Hudson remediation will be utilized in the design and implementation of this remedy?
- RESPONSE 28: While representing a different set of site specific conditions, the applicable information and experience from the Upper Hudson, will be used extensively to design and implement this remedy. Experience concerning the types and frequency of monitoring, community interaction issues, debris removal, air monitoring, dredge techniques, and silt controls will be used in developing the remedial design.
- COMMENT 29: Where will the PCBs be taken after they are removed from the site?
- RESPONSE 29: The dewatered PCB sediment will be taken to a facility which is permitted to accept PCB waste of the type and concentration removed.
- COMMENT 30: Barge and rail transport of both clean and contaminated soils and sediments should be evaluated during the remedial design.
- RESPONSE 30: The modes of transport for both clean and contaminated soils and dewatered sediment will be evaluated in the remedial design.
- COMMENT 31: Is there a plan for diverting and/or protecting river traffic during the dredging operation?
- RESPONSE 31: The appropriate navigational warnings will need to be reviewed and approved for conformance with US Coast Guard requirements before they are deployed.
- COMMENT 32: Discuss the significance of the "drag-down" concept.
- RESPONSE 32: The "drag down" refers to the potential for the liquid and semisolid PCB material to adhere to the steel sheet piles as they are driven through these materials into deeper into uncontaminated zones. The concern is that PCBs would be carried down into an uncontaminated area during the driving of the piles or flow as a dense non-aqueous phase liquid (DNAPL) through a newly-created migration pathway.
- COMMENT 33: Are the proposed new wells in the northwest extension area just to monitor PCBs?
- RESPONSE 33: The remedy anticipates installing new wells to both monitor and recover the PCB DNAPL, if present. The details of the additional work will be identified in the remedial design and site management plan.
- COMMENT 34: How much of the PCBs have you removed so far in terms of the total amount there?

- RESPONSE 34: The amount of PCB DNAPL present was not estimated due to the difficulty in obtaining samples from the immediate offshore area. As a result, the proportion of PCBs removed has not been calculated, but to date approximately 500 gallons of PCB DNAPL have been collected and disposed off-site.
- COMMENT 35: Were samples for metals treated with acid to allow for metals speciation?
- RESPONSE 35: Yes, samples for metals analysis were acidified, and therefore the results represent total metals in the sample. However, metal speciation was not performed.
- COMMENT 36: Were single or duplicate assays performed?
- RESPONSE 36: Most samples were single analysis. However, a certain number of samples were analyzed as duplicates, in accordance with generally-accepted practice for conducting environmental investigations.
- COMMENT 37: Do you have to do more investigation to determine whether the new bulkhead will go into the liquid PCB pool?
- RESPONSE 37: More investigation will be performed during remedial design to determine the final alignment of the sheet pile wall. Previous probing work identified a proposed location which is shown on Figure 7. The major factor concerning the alignment is the presence of the rip rap which will need to be avoided or moved during installation.
- COMMENT 38: How long will the monitoring wells be there?
- RESPONSE 38: The monitoring wells will remain in place as long as they are needed to monitor contamination in the groundwater.
- COMMENT 39: Are you getting pure PCBs out of the recovery wells now?
- RESPONSE 39: The material being removed from the wells contains approximately 30-40 % PCB.
- COMMENT 40: As to backfilling the site, it is underwater at times. The Army Corps of Engineers (ACOE) guidelines you are following need to be enhanced.
- RESPONSE 40: The remedial design will evaluate design considerations which take into account estimated sea level changes. Shore protection will be designed to prevent erosion of the shore due the action of wind, waves and other forces to prevent damage to on-shore development or potential exposure and

subsequent transport of contaminated soils. These design elements will also be part of the review by the ACOE as part of their permitting process.

- COMMENT 41: What action levels will be used in the CAMP? How can you justify 1ppm for baseline? How, during a limited public comment period, can the public determine whether the 1ppm is sufficiently protective?
- RESPONSE 41: The 1 ppm action level is the soil cleanup objective for soil. The Community Air Monitoring Plan (CAMP) still needs to be developed, and it will define the site specific action level for airborne PCBs. The Department has used a 100 ng/m³ action level for PCBs on recent PCB removal projects. However, the site-specific action level will be developed and documented in the CAMP during the remedial design phase.
- COMMENT 42: Has contamination from the upper Hudson River dredging released contamination to the lower Hudson River down to this location, will it?
- RESPONSE 42: In 2009 and 2011, the General Electric Company under the oversight of the US Environmental Protection Agency dredged PCB contaminated sediment from stretches of the Upper Hudson River as part of the Hudson River PCB Superfund Site. During dredging, Hudson River water quality was monitored daily at several locations downstream of operations in the Upper Hudson (north of Troy) and samples were collected monthly in the Lower Hudson River at Albany and Poughkeepsie. Water quality was also monitored in the Upper Hudson during the off-season when no dredging was underway. Most relevant based on proximity to the Harbor at Hastings Site are the PCB levels measured in water samples collected from Poughkeepsie; these sample results indicate that PCB levels in river water at Poughkeepsie during dredging are consistent with levels measured before dredge operations began. Water quality will continue to be closely monitored as dredge operations continue.

Jacques Padawer, Ph.D. submitted a letter via email dated February 1, 2012, which included the following comments:

- COMMENT 43: Does the DEC have chromatographic and elemental profiles of these three (or more) PCB species in the Arco property? This is critical, should be available, and should be disclosed.
- RESPONSE 43: Chromatograms may be found in several documents, including the January 2005 "Field Work Summary Report for Fall 2004" Appendix C, and the November 2009 "Report on Supplemental Northwest Corner Investigation Findings". These documents are available for public review in the repositories.
- COMMENT 44: Low chlorination PCBs ("liquid?") of relatively higher vapor pressure are known to be sequestered by the liver, bind to DNA, and induce liver

carcinomas. What modified precaution(s) does the DEC propose to use to monitor the new threats?

RESPONSE 44: In order to have health effects from these PCBs there first has to be exposure to them. In the remedial design phase a site specific Community Air Monitoring Plan (CAMP) will be developed which will specify the action levels for these PCBs. Before implementation of the remedy a public meeting will be held and will explain in further detail how the CAMP will be protective of the community.

Jeremiah Quinlan a Trustee with the Village of Hastings-on-Hudson submitted a letter dated February 29, 2012 which included the following comments:

- COMMENT 45: Evaluate and, as appropriate, remediate sanitary/process sewers on site
- RESPONSE 45: The process sewers and floor drains from Building 52 are identified for removal. Other sanitary and process sewers will be further identified during the remedial design and will be evaluated for remediation as appropriate.
- COMMENT 46: Evaluate the use of the adjacent railroad thoroughly and use it to the extent reasonable.
- RESPONSE 46: See Response 30.
- COMMENT 47: Disposal of on-site sediments: Strict standards are needed to avoid future issues. Clean and sandy sediments will have less future risk of being a future contamination issue and will have fewer compaction/settlement issues.
- RESPONSE 47: The remedial design will identify the parameters for reusing sediment on-site. The reuse of sediments on-site has the benefit of reducing transportation related impacts for both contaminated material and backfill.
- COMMENT 48: Where a sloped shoreline will be employed, heavy armoring will provide better protection during storms.
- RESPONSE 48: The type of armoring will be identified in the remedial design and the protection during storm events will be evaluated as a factor in identifying the proper size of the material.
- COMMENT 49: Concerns on how will the IRM wells be protected from the public in the northwest corner that will be a public park.
- RESPONSE 49: The recovery wells in the Northwest Extension Area will be protected from the public in anticipation that the area may be used for public access. This area may need to be temporarily closed during operation and maintenance activities. The remedial design will identify approaches, such as flush

mounting the wells; dedicated vaults; or other engineering controls to protect the public while allowing the operation of the wells for their intended purpose.

Eileen Bedell, the property owner of the Hudson Valley Health & Tennis Club, submitted a letter dated March 9, 2012 which included the following comments:

- COMMENT 50: I would like the plan to show my property lines reflected on all drawings. My deed includes both shallow and deep water riparian rights. In fact, all of the "Old Marina" is owned by Hudson Valley Health & Tennis Club, although I have no objection to the use of "Old Marina" on your diagrams.
- RESPONSE 50: The property lines will be shown on the future drawings and plans in the remedial design. The Department acknowledges the ownership and potential future use of the marina and the need to gain access.
- COMMENT 51: I would like the plan to be modified to take into consideration my future plans for reopening the marina. This includes depth, configuration and access issues.
- RESPONSE 51: The sediment removal areas are based on the contamination identified in the remedial investigation phases. The approved plans for potential re-use of the marina will be factored into the remedial design with the objective of reducing the footprint of the Northwest Extension Area and minimizing backfill in the marina area. The backfill requirements will be evaluated and adjusted for the future and reasonably anticipated use of the sediment removal area of the marina. However, any additional or future dredging for the marina project must obtain approvals through the regular permitting process, including ECL Article 15 or 6NYCRR Part 608. As noted earlier, additional investigations will be needed before the final sheet pile wall alignment is determined.
- COMMENT 52: The metals and PCB contamination plan is inconsistent with the data ARCO has provided me. In addition, test sampling was often restricted by the logistics of sample extraction.
- RESPONSE 52: The extent of metals and PCB contamination is identified in the Feasibility Study, Appendix C. The sediment results are presented based on the depth below the sediment/water interface, and are consistent with previous reports. The Department agrees that data gaps exist in the marina area due to the inability to physically access certain locations. For this reason additional sediment sampling will be performed during the design phase and the obstructions are removed.
- COMMENT 53: I would like the plan to clarify how future zoning changes for the ARCO property apply or do not apply to my property.

- RESPONSE 53: The easement placed on the ARCO property pursuant to the ROD will not apply to the Hudson Valley Health & Tennis Club property. Concerns related to future zoning issues should be directed to the Village of Hastings-on-Hudson.
- COMMENT 54: I would like clarification as to whether piles and pile-supported structures will be permitted in the marina.
- RESPONSE 54: Restrictions on the installation of piles and pile-supported structures outside of Northwest Extension Area (NEA) are not planned. The installation of piles will not be restricted in the marina area provided that PCB DNAPL is not present. The remedial design will determine the precise boundaries of the NEA.
- COMMENT 55: I have no need for backfilling of the marina post dredging. In addition I welcome reuse of the silt as landfill on the OU1 site.
- RESPONSE 55: The comment is noted. See Response 51.
- COMMENT 56: As you are aware from our discussions, I am opposed to the plan as drafted, particularly based on #2 and #3 above (*as referenced in the letter*). Without modification, I would be unwilling to grant access for executing the work.
- RESPONSE 56: The Department acknowledges the plans for re-use of the marina. Additional work will be performed during the remedial design to minimize or eliminate the sheet pile wall on your property, to the extent it can be while still meeting the ROD objectives, to allow implementation of both the remedy and the proposed marina.

Daniel E. Estrin and Justin M. Davidson from Riverkeeper submitted a letter dated March 12, 2012 which included the following comments:

- COMMENT 57: Riverkeeper is particularly concerned with the PRAP's general lack of clarity regarding the cleanup procedures that will be followed. In the interest of providing an open and transparent dialogue around the Department's efforts to remediate the site, we want to ensure that the public is well informed as to the particular processes that will be employed during the long-awaited cleanup of the Site.
- RESPONSE 57: The cleanup procedures will be identified in the remedial design. The Department shares Riverkeeper's concern that the public should remain well informed during the remedial design and implementation of the remedy. Additional outreach activities will be scheduled at appropriate milestones in the project.

- COMMENT 58: The PRAP is unclear as to where additional delineation sampling and study will be conducted. Before dredging and removal activities commence in the deepwater portion of the site, additional delineation sampling must be conducted in order to entirely understand and characterize the full extent of contamination. In particular, paragraph 6 of the proposed remedy provides, "the specific area where fixed sediment resuspension controls can be feasibly deployed will be evaluated during design based on the water depth and velocity conditions. Alternative designs for fixed resuspension controls will be evaluated to increase the depth of feasible resuspension controls." Paragraph 7 of the proposed remedy – which deals with "removal of sediment from a targeted area outside the northwest extension area in deeper than 15 feet of water" - explains that "during design, sampling will be performed to determine whether additional areas of PCBs greater than 50 ppm exist. Based upon an evaluation of the significance of the distribution of contaminants and the feasibility of removal, additional areas of sediment may be targeted for dredging." Taken in conjunction, these two statements suggest that the PRAP fails to define with reasonable specificity the areas where these additional sampling efforts will take place. Particularly, it is not clear whether this sampling will be confined to the immediate vicinity of the northwest extension area, or whether it will appropriately extend downriver to other areas where earlier incomplete and insufficient sampling indicates the possible presence of PCB concentrations.
- RESPONSE 58: Additional sampling will be performed in both the near shore and deepwater areas where data gaps exist to provide a precise delineation of sediment to be removed. Such additional sampling is not confined to the immediate vicinity of the Northwest Area.
- COMMENT 59: Definition of the areas to be sampled and the associated extent of the potential dredging are essential elements of efforts to evaluate the potential for resuspension and contaminant dispersion and the need for and type of resuspension controls. Recent experience in the upper Hudson near Fort Edward, New York indicates that the combination of equipment selection and dredging protocols can substantially reduce downstream dispersion and in many cases have the potential to eliminate the need for fixed controls such as silt curtains. This potential should be carefully evaluated with full consideration of complications associated with water depths in excess of 15 feet and/or energetic river and/or tidal flows after specification of the area and associated contaminant mass to be dredged. It does not appear to Riverkeeper that such an evaluation has been conducted to date.
- RESPONSE 59: The Department has determined that resuspension controls will be used where feasible to reduce and minimize the dispersion of contaminants and will require that the extent of contamination, and the associated extent of the potential dredging, be determined during the design in order to design the controls necessary to address resuspension and contaminant dispersion. The

recent experience in the upper Hudson River has provided information that can be applied to the remedial design of this dredging project. However this experience has limitations since the river velocities in the upper Hudson River are less than the current velocities near Hastings-on-Hudson. Also the sediment matrix at this site is also much finer than in the upper Hudson. These site-specific factors will be evaluated in the remedial design to choose the appropriate resuspension controls. The Department contacted a silt curtain manufacturer and a remedial contractor to independently verify the limitations for resuspension controls based on the site specific conditions in selecting the remedy.

- COMMENT 60: During the Public Meeting on January 26, 2012, held in the Village of Hastings-on-Hudson, DEC Staff (Mr. George Heitzman) explained that during design, additional delineation sampling will be conducted "throughout." However, it is still unclear where precisely this additional sampling will be conducted, and a thorough explanation should be described in the Record of Decision ("ROD") for OU-2. DEC Staff further explained that additional sampling will be conducted only in areas where previous sampling results indicated "contiguous or concentrated" concentrations over 50 ppm of PCB, rather than "one hit" concentrations above 50 ppm. Earlier sampling that was conducted in portions of the deepwater site outside the northwest extension area was incomplete and unable to accurately define the full extent of contamination, so it would be erroneous to base future sampling efforts on what was conducted previously. Extensive additional delineation sampling should be conducted throughout the entire deepwater portion of the site to best understand precisely where these contiguous or concentrated zones exist and to allow accurate definition of the mass of PCB in each zone.
- RESPONSE 60: The previous sampling provided sufficient information to allow the selection of remedy, but the remedy calls for additional sediment sampling in the deepwater areas to further delineate the areas to be dredged to meet the cleanup goals for PCBs. Post-ROD delineation sampling is routinely conducted at remediation sites to more precisely determine removal limits. The Department also agrees that additional sampling is needed to identify whether, and where, contiguous or concentrated zones may exist to allow accurate definition of the sediment to be dredged.
- COMMENT 61: Because of the ambiguity surrounding the additional delineation sampling, Riverkeeper requests that an <u>Additional Delineation Sampling Workplan</u> be developed to describe with specificity the locations, actions, and timing of the additional delineation sampling to be conducted. In light of the lack of detail in the PRAP concerning additional in-river sampling to be conducted, we believe this Workplan should be publicly noticed and made available for public comment.

- RESPONSE 61: The Department will require the development of a Sediment Delineation Sampling Work Plan as an element of the design and it will be publicly noticed and made available for public review.
- COMMENT 62: The proposed action level of 50 ppm for the OU-2 deepwater area is premature, and a more stringent action level threshold below 50 ppm is necessary to protect the benthic community. The PRAP indicates that dredging of sediment in the deepwater portion of OU-2 will be conducted in areas defined by PCB concentrations greater than 50 ppm to six feet below the existing bottom. However, the PRAP completely fails to explain the technical rationale for the proposed 50 ppm action level. According to the DER-10, a PRAP must summarize the "alternatives considered and discuss the reasons for proposing the remedy," which has not been done here with respect to this proposed action level. During the Public Meeting on January 26, 2012, DEC Staff stated that a 50 ppm action level "struck the right balance," given the practical concerns and difficulties with dredging in deeper water. While Riverkeeper understands these concerns, this narrative answer can not suffice as a cogent technical basis to support 50 ppm as the appropriate action level. A satisfactory technical explanation must be made so the public can be informed and properly analyze the bases for selecting an action level that is relatively high.

In addition, on choosing a 50 ppm action level, the PRAP only states that "Targeting deepwater areas with PCBs above 50 ppm reduces the time needed to complete dredging activities when compared to deepwater areas above 1 ppm." However, when asked at the Public Meeting about whether NYSDEC calculated or estimated exactly how much longer dredging would take under a more stringent action level, DEC Staff (Mr. William Ports) responded that DEC had not calculated the time. The PRAP should not conclude without technical backup that choosing a higher action level of 50 ppm will reduce the amount of time needed for dredging when the Department has not calculated or estimated any such temporal differences.

The matter of remedial criteria warrants careful elaboration in the ROD for OU-2. Under the NYCRR, the goal of any remedial program for a specific site is to "restore the site to pre-disposal conditions, to the extent feasible. At a minimum, the remedy selected shall eliminate or mitigate all significant threats to the public health and to the environment presented by contaminants disposed at the site through the proper application of scientific and engineering principles." These words are echoed verbatim in the PRAP as two of its stated goals. The selection of the higher threshold of 50 ppm, without sufficient technical support and explanation supporting that action level, does not appear consistent with this legal mandate and the PRAP's stated goals.

While Riverkeeper understands that this higher threshold selection may be based on concerns that dredging will facilitate dispersion and ultimately increase contaminant bio-availability beyond current levels, such concerns must be based on hard data with particular emphasis on the mass of contaminant to be addressed by dredging. In the presence of a small mass *i.e.*, a discrete area containing less than several pounds of PCBs where that mass is subject to continuing deposition and minimal erosion – the higher threshold of 50 ppm may be justified. However, for larger masses, lower thresholds are recommended with 10 ppm being the highest consistent with values used in other sites in the Hudson River and New England when dealing with significant masses of PCB. Because the data available in the PRAP and Revised Feasibility Study (RFS) do not provide sufficient information to properly assess the mass of PCB concentrations throughout the extent of the Site, the public is unable to determine whether the contamination presents "significant" threats to the public health and environment. As a result, the specification of the threshold is at the very least, premature. The present protocols specified in the PRAP do not appear to be sufficient to provide the necessary level of specificity, and the current approach based on sparse sampling and assumptions of costs should be reconsidered. The ROD for OU-2 must provide the basis for quantitative evaluation of the extent of contamination allowing subsequent evaluation and definition of the threshold criteria.

RESPONSE 62: As discussed in the Basis for Selection section of the ROD, the 50 ppm action level for deepwater sediments balances the potential for construction-related impacts associated with disturbance to the river bottom and migration of suspended sediments with the removal of sediments which have the highest levels of PCBs and the greatest potential to migrate and be an on-going source to the environment. The deepwater sediments present a number of concerns which were factored into the decision to remediate sediments in the site specific deepwater areas. These include environmental consequences of resuspending contaminated sediments without resuspension controls in these areas, the potential for remaining contaminated sediments to be disturbed in the future, the proximity of contamination to the sediment surface, and the concentration of contaminants. The Department evaluated the degree and extent of contamination for different action levels based on currently available information. The additional delineation sampling data from the deepwater areas to be collected during the remedial design will be further evaluated and the following factors will be considered in determining the final deepwater dredge area: 1) depth of PCB contamination, 2) type of environment (erosional or depositional), 3) contiguous areas of contamination, 4) thickness of clean sediment above the PCB contamination, 5) duration of dredging and associated potential for migration of resuspended sediments, and 6) the area weighted surface concentration of PCBs.

The time to remove the sediments in the deepwater areas was estimated for different action levels and is presented in the table below. These estimates are based on standard production rates and do not account for certain site-specific factors. The estimated volume of deepwater sediments that contain greater than 50 ppm PCBs is approximately 5000 cubic yards. The size of the mechanical dredge was assumed to be 5 cubic yards, with a production rate of 80 cubic yards per hour. Time estimates were prepared for both an 8-hour dredge day, and a 4-hour dredge day. The latter estimate reflects an attempt to limit deepwater dredging to the slack period during each daylight portion of the tidal cycle to minimize the migration of fines from the dredge area.

Deepwater	Estimated	Estimated	Estimated	Estimated
PCB Remedial	Volume of	Time in hours	Days	Days
Goal	Sediment yd ³	of Dredging	(8 hrs/day)	(4 hrs/day)
50 ppm	5000	64	8	16
10 ppm	20,000	250	31	62
1 ppm	53,000	662	83	166

The Department notes that comparison to action levels for unspecified sites in the upper Hudson River and New England site (presumably the Housatonic River) may not be valid due to the site-specific conditions encountered at this site. Sediments in the deepwater portion of the Harbor at Hastings site are significantly finer, comprising approximately 90% fines passing the #200 sieve, as compared to around 40% fines for the upper Hudson River project. Combined with the greater water depth and current velocity, the potential for uncontrolled dispersion during dredging is much greater at this site. The Department also notes that the Housatonic River project was performed by diverting the river and dredging in a dewatered condition, which provides a high degree of migration control, but is not a feasible approach at this site. As a result, the site-specific action levels that resulted from the balancing of criteria for those sites are not comparable to the Harbor at Hastings site.

To the extent feasible the site will be restored in a manner that will be protective of both the environment and public health. The remedy described in this ROD acknowledges the added difficulties of attaining pre-disposal conditions in an environment that contains levels of PCBs that are above standards in upstream locations not affected by the site. However, through implementation of engineering and institutional controls selected in the remedy, significant threats to public health and the environment will be mitigated.

COMMENT 63: As the Department is aware, on September 8, 2011, Riverkeeper submitted to NYSDEC a position statement for proposed PCB and removal criteria for the offshore areas of the Hastings site prepared by our technical consultant, Dr. W. Frank Bohlen, PhD. *See* Exhibit 3. In that statement, Riverkeeper suggested that sampling should be conducted at sites with PCB concentrations of 10 ppm at the surface (0-6 inches) or 50 ppm on the vertical between 0.5 and 3.0 feet below the sediment-water interface, unless the site was surrounded by a minimum of four (4) other cores spaced around the acre surface centered on the high concentration site. Supplementary sampling should consist of four (4) sediment cores each to six (6) feet below the sediment-water interface with each taken at the midpoint (or some reasoned alternative) of the perimeter boundaries of a one acre square centered on the high concentrations site. Each core should to be sectioned and analyzed to determine PCB concentrations over the vertical for the 0-6 inches, 0.5-3.0 feet, and 3.0-6.0 feet segments. These data will be compiled with concentrations on the 0-3 feet interval used for computation of the area weighted average (AWA) concentrations. The data detailing concentrations in the 3-6 feet layer would be retained for informational purposes.

- RESPONSE 63: This approach will be considered in the development of the Sediment Delineation Sampling Work Plan during the remedial design.
- COMMENT 64: Department Staff apparently propose to reject Riverkeeper's position statement as a reasonable way to proceed with additional sampling and PCB remediation in the Deepwater areas. Riverkeeper continues to believe that a more stringent action level below 50 ppm is necessary to protect the benthic community, and in turn, human health and safety. Dr. Bohlen advises that a lower threshold concentration of 10 ppm for the first six inches of sediment would greatly reduce the potential for the bio-accumulation of PCBs by the local marine biological community. *See* Exhibit 3. Dr. Bohlen's specification of the 10 ppm threshold is based on distributions of higher concentrations of PCBs residing below that level as shown in the May 2011 data set in the Revised Feasibility Study. If additional sampling shows that these distributions are very localized or that the deeper sediments contain lower concentrations, then leaving them in place *may* be justified. However, that conclusion cannot be made until a more substantive and robust discussion of the issue supported by data is presented.
- RESPONSE 64: The Department has not rejected Riverkeeper's approach to additional sampling and remediation in deepwater areas. The Department will consult with the interested stakeholders after the additional sampling data is obtained.
- COMMENT 65: First among the nine factors used in selecting a remedy for a site is the "Overall protectiveness of the public health and the environment." Indeed, the PRAP recognizes that "[t]o be selected, the remedy must be *protective of human health and the* environment, be cost-effective, comply with other statutory requirements, and utilize permanent solutions, alternative technologies or resource recovery technologies to the maximum extent practicable." In order to meet the PRAP's stated goal to "eliminate or mitigate all significant threats to public health and the environment presented by the contamination identified at the site," Riverkeeper believes that DEC

must consider and adequately study the feasibility of dredging in deepwater areas with a 10 ppm action level for the first six inches below surface ground. This includes additional sampling and study required to properly assess the mass of PCB concentrations. In fact, as DEC Staff explained in the January 26, 2012 Public Meeting, one of the key lessons learned from the GE Site remediation is to "fully characterize" the contamination. As per DEC's own guidance and experience, therefore, DEC is obligated to fully investigate the extent of contamination, which requires more than a superficial examination and testing of potentially contaminated areas.

RESPONSE 65: See Response 62 above. The Department and NYSDOH believe the selected remedy is protective of human health and the environment because it is unlikely for recreational users of the river to be exposed to site-related contaminants through the incidental ingestion of contaminated surface water and direct contact with contaminated sediments in the deepwater area, the primary human exposure pathway is through the consumption of contaminated fish tissue. One goal of the monitoring program will be to determine if the remedy is successful in reducing the local contribution to PCB tissue concentrations in biota. This program will monitor the performance and effectiveness of the remedy in achieving the remedial goals established for the project and will be a component of the monitoring and maintenance of the site. For specific advisories on fish consumption in this area please refer to NYSDOH's annual Health Advise on Eating Sportfish and Game.

 $\frac{http://www.health.ny.gov/environmental/outdoors/fish/health_advisories/docs/advisory_booklet_2011.pdf}{}$

COMMENT 66: The ROD for OU-2 should describe the equipment or technology to be used for the in-water dredging activities. In discussing the proposed elements of the cleanup of the OU-2 portion of the site, the PRAP does not describe what types of technology or equipment will be used during the dredging activities. Section 375-1.8(a)(4) of the NYCRR provides that "Remedy selection at a site may consider the use of innovative technologies which are demonstrated to be feasible to meet the remediation requirements." The upriver dredging operations at the GE site provided for several technical advancements in dredging and re-suspension technologies. Even though the PRAP represents the initial stages of the design effort, it would be important to see the use of advanced technologies evaluated in the ROD and implemented at the Hastings site.

RESPONSE 66: In general there are two types of dredging technologies which are applicable to the Harbor at Hastings site. These include mechanical and hydraulic dredging equipment, both types of dredges will be evaluated during the design. Debris removal will be performed before sediment dredging begins.

- COMMENT 67: The DEC should consider effects of flooding and sea level rise in its site design. The PRAP makes no mention of potential effects on OU-1 and OU-2 due to flooding of the adjoining upland portions of the site. Although some accommodation has been made in the preliminary OU-1 designs for expected long-term sea-level rise (accepting the Army Corps of Engineers' two-foot fill layer recommendation), there is also the matter of direct rainfall, storm surge and/or high river stage effects on OU-1 to consider. Over the past several years this area of the Hudson River has experienced several extreme storm events resulting in standing water on the site. In fact, as several local Hastings-on-Hudson residents attested to at the January 26, 2012 Public Meeting, the area around the Site has experienced several major flood events over the past several years, indicating a possible change in climate conditions and storm patterns that should be accounted for in DEC's evaluation and design. Depending on source, volume, and velocity, such waters have the potential to overwhelm proposed containment/treatment facilities and destabilize portions of the shoreline and/or groundcover. The displacement of any contaminants from these areas may in turn affect portions of the adjoining offshore. The ROD for OU-1 and OU-2 should include efforts to demonstrate the adequacy of proposed designs to effectively armor the site and minimize sensitivity to storm impacts.
- RESPONSE 67: The Department shares the concerns expressed regarding the potential influence of climate change and rising sea level on the long-term effectiveness of the remedy to contain contamination during large storm events. The remedial design will consider future storm events and rising sea level that are likely to result in more intense storms, higher water events, and greater erosive forces on the site than have been documented in the past.

Eric Larson with ARCO submitted a letter dated March 9, 2012 which included the following comments:

- COMMENT 68: We anticipate that remediation (both in OU-1 and in OU-2) may need to be coordinated with anticipated site redevelopment. While future uses of the site have not been resolved, we understand that Atlantic Richfield supports the concept of beneficial reuse of this site and anticipates working closely with the Village and other stakeholders in this regard. We would request that the ROD allow for some flexibility in design so that remediation does not unnecessarily impede redevelopment efforts while still maintaining environmental effectiveness.
- RESPONSE 68: The Department agrees with this comment and will implement additional discussions to address issues and concerns with the Village and stakeholders while the remedial design proceeds. However, implementation of the remedy will not be delayed due to development-related issues.

COMMENT 69: Targeted Deepwater Dredging: In the October 2003 PRAP for OU-2, consistent with the scope of the RI work and data developed as part of the administrative record, NYSDEC did not propose to conduct any dredging in the deepwater area. Instead, the 2003 PRAP proposed a long term monitoring program for the deepwater area. Since that time, and consistent with the RI scope, there has been only limited additional analysis of the issues surrounding deepwater dredging as proposed in the current OU-2 PRAP. Silt curtains and other resuspension controls are unlikely to be feasible in this environment, nor are they likely to serve as effective barriers to the transport of resuspended sediments at these depths and flows. Therefore, any targeted dredging must balance the negative environmental consequences of resuspending contaminated sediment with the environmental benefits of conducting this dredging. These considerations weigh in favor of conducting limited targeted dredging for shallow (0-2 feet) hot spots (50 ppm or greater) in areas of scour that show a contiguous and concentrated pattern of sediment contamination. Consideration should be given to an alternative deepwater cleanup level at or below the 335 ppm Level of Protection screening criterion included in Table 3 of the PRAP.

We suggest that deepwater dredging of sediments deeper than about 2 feet, particularly in areas that do not appear to be subject to scour, does not provide an environmental benefit that outweighs the potential negative consequences associated with resuspension and transport of contaminated sediments. The deepwater areas identified in the PRAP on Figure 7 are generally consistent with this remediation approach and we do not believe additional dredging in other areas is warranted based on a review of the existing data and the multiple lines of evidence that suggest a consistently depositional environment. The current geometric weighted average concentration of PCBs in surface sediments is approximately 1.3 ppm for all areas outside the proposed deepwater dredge extents.

In this regard, we asked two reviewers, Dr. Michael Palermo and Dr. Victor Magar to review the proposed remedy with respect to the targeted deepwater dredging and we have attached their comments as well.

RESPONSE 69: The areas of targeted dredging in the deepwater areas will be further refined in the remedial design. The Department recognizes that standard silt curtains will not be effective in this environment. However, the Department does not want to predicate the means and methods of minimizing or reducing sediment resuspension in the deepwater areas. The dredging in the deepwater areas must balance the distribution of contaminants and the feasibility of removal. Therefore when additional sediment data is available from the deepwater areas the following factors will be considered: 1) depth of PCB contamination, 2) type of environment (erosional or depositional), 3) contiguous areas of contamination, 4) thickness of clean sediment above the PCB contamination, and 5) the duration of dredging required and associated potential for migration of resuspended sediments, and 6) the area weighted surface concentration of PCBs.. The Department rejects using the PCB cleanup level of 335 ppm in the deepwater areas because it would protect the environment based only on acute toxicity to benthic organisms, and it is feasible to achieve a higher level of protection. The Department believes that the 50 ppm cleanup in targeted areas provides the best balance of the selection criteria given site specific conditions at the site.

COMMENT 70: Metals: Nearshore, Old Marina, North Boat Slip

The OU-2 PRAP proposes dredging sediments to depths of up to 6 feet below the current sediment surface in the nearshore area, Old Marina, and North Boat Slip. There appear to be several rationales for this dredging including: (a) removal of sediments exceeding the PCB remediation criteria; (b) removal of sediments exceeding the PRAP's selected metals criteria; and (c) the provision of sufficient depth to install backfill or a cap to isolate remaining contamination and/or protect against scour or erosion.

The metals remediation criteria selected in the PRAP do not reflect metals toxicity and are not indicative of ecological risk. Indeed, site related investigations into metals toxicity have demonstrated the absence of toxicity at levels much higher than the criteria established in the PRAP. Thus, this approach is not consistent with EPA policy and guidance regarding the evaluation of sediment toxicity and the selection of sediment remedies. For this reason, we do not support the metals criteria set forth in the PRAP. We asked Dr. Kenneth Jenkins to review the PRAP with respect to metals criteria, ecological risk, and evidence of site-related toxicity. We have attached his comments in that regard.

Although metals concentrations in sediments do not justify nearshore dredging up to 6 feet in depth as a general approach, we recognize that sitespecific evidence suggests that there may be some benthic toxicity associated with copper concentrations in excess of 982 ug/l, in nearshore sediments if they were to become exposed to biota through inadequate separation. In these targeted areas, near two outfalls along the southern portion of the site, metals concentrations in sediment may support dredging sufficient to protect against scour and provide physical separation from biota.

In addition, as a practical matter, there may be other reasons why some of the proposed nearshore dredging may be appropriate for the ROD. For example, much of this dredging will also remove sediments contaminated with PCBs. For areas without PCB contamination, considerations of site-specific scour potential and the need to improve site-specific aquatic habitat depth could also support portions of the proposed dredging. For this reason, we would urge that the ROD provide for dredging of up to 6 feet in depth while allowing

some flexibility in remedial design to determine whether certain nearshore areas could be dredged to less than 6 feet in depth.

While returning sediments to pre-existing conditions to the extent feasible is an RAO, there may be little to no ecological benefit from the removal of metals above the remediation criteria set in the PRAP. As a result, short and long term impacts should be the primary consideration for the feasibility of additional dredging, and the ROD should provide some flexibility to reduce nearshore dredging depths during remedial design to minimize short and long term adverse impacts of dredging, particularly in areas where PCB contamination is absent while accounting for aquatic habitat depth, the integration of a sloped shoreline between OU-1 and OU-2, and other localized factors as may be appropriate.

- RESPONSE 70: The metals remediation criteria in the PRAP are based on background concentrations of metals in the sediment. The use of a background concentration as a basis for cleanup concentrations is not based on toxicity but on the occurrence and concentration of the metals in the surrounding area. Toxicity testing conducted on the site was not sufficiently robust to develop a site-specific toxicity threshold. The dredging depth was established to allow for the feasible removal of contaminated sediments and the restoration of the river bed following the remediation. Actual dredge depth will be determined during design based on sampling that indicates the actual depth at which the sediments exceed the cleanup criteria. If other feasibility concerns arise during design, consideration will be given to adjusting dredging appropriately.
- COMMENT 71: Capping and Backfilling in the Nearshore Area

The PRAP also proposes the use of backfill and/or capping materials in the nearshore area to protect against scour or erosion, to return the area to predredge depths, and to provide isolation from remaining contamination. Regardless of whether the material is backfill or a cap, 6 feet of fill is not necessary to protect human health and the environment from any contamination that may remain. The analysis presented in the RFS indicated that 3 feet was sufficient. The need for anything more than engineered controls that provide physical separation or isolation is unnecessary. A cover of 6 feet far exceeds any cover necessary to provide separation or isolation of remaining contamination. It is also far more than necessary to provide a substrate for biological activity that would be protected from contact with siterelated contaminants. We asked Dr. Danny Reible to review this issue, and we have attached his comments.

Further, in some cases, the requirement for up to 6 feet of backfill may impede the coordination of redevelopment and remediation. The ROD should provide flexibility for backfill/capping in the nearshore areas with between 2 and 6 feet of material and should allow both the full extent of the cap/backfill and the type and nature of soils, sands, or gravels to be used will be determined in remedial design.

- RESPONSE 71: Flexibility regarding backfill is provided for in the ROD. Other than the isolation capping layer, the specific substrate for backfill is not specified. Additionally, the remedy allows for a river flow and deposition study to consider allowing natural in-filling following dredging. As noted in the ROD the purpose of the backfill is to "isolate remaining contamination, prevent erosion of cap materials, restore bathymetry, and provide a habitat layer". Depending on dredging depth and location, replacement of riverbed materials with significantly less than what is removed during dredging would not meet all of these goals. See also Response 51.
- COMMENT 72: Certain technical challenges have been deferred to design. Perhaps the most significant is whether resuspension/transport controls might be effective in deeper water to allow the expansion of the nearshore dredging area. We have conducted an initial investigation as part of the studies previously submitted to NYSDEC, which shows that the current limits established in the RFS and PRAP for the implementation of resuspension/transport controls are accurate. Our investigation indicates that there is no demonstrated feasible technology that would allow us to significantly expand the proposed dredging limits without creating a substantial risk of contaminant resuspension and transport. In fact, the limits proposed are at the outer edge of silt curtain effectiveness. Thus, consideration of any expansion of the nearshore area in the design phase is unwarranted. There is no compelling reason to treat this technical issue any differently than other technical issues where future improvements during the design process are always possible and are taken into account if and when they are identified.

In this regard, we asked Dr. Palermo to review this issue, and we have attached his comments as well.

- RESPONSE 72: The comment is noted.
- COMMENT 73: Long Term Monitoring of the Remedy

The RAOs selected in the PRAP are generic and not site-specific. This presents various potential issues including long term monitoring to evaluate the success of the remedy. In particular, the Hudson River (and particularly the lower Hudson) is a highly urbanized watershed that has been home to industry for over 150 years. As a result, the Hudson River has substantial, system-wide contamination that is not related to the Hastings site, including PCB and metals contamination. We note that concentrations of PCBs in Hudson River reference sediments upstream of the Site range from 1 ppm to 2.1 ppm in a background sample within the 0-2 foot interval. As a result, even with successful remediation, site sediments will eventually "equilibrate" with

urbanized background concentrations of PCBs, metals, and other pollutants, making the generic RAOs difficult to achieve. The presence of this background industrial contamination must therefore be taken into account in the design and implementation of a long term monitoring plan. Metrics like PCB concentrations in fish tissue, for example, which are more likely to reflect Hudson River conditions in general rather than site specific conditions, are not suitable for inclusion in a long term monitoring program.

We have attached the comments of Dr. Magar on this issue.

- **RESPONSE 73:** The Department has used monitoring to discern different PCB source conditions in urban watersheds. These include PCB congener analysis; analysis of recently deposited surface sediment concentration; analysis of the source of the metals; and other techniques that have been used on other sediment remediation sites. The Department acknowledges that there are other sources of contamination that are unrelated the Harbor at Hastings site. The long-term monitoring plan described in the PRAP is expected to include the consideration of other industrial inputs in the river mainly through the use of baseline and reference sampling during monitoring. Previous data on the site indicated a local effect of increased PCBs in eels associated with the site. Since PCBs will remain in the river and the remedy will depend on engineering controls to prevent continued release of PCBs long-term monitoring of organisms in the river, including fish, is necessary to demonstrate the effectiveness of the remedy to decrease the site-specific influences on the local fish and therefore, must be retained as a component of the monitoring plan.
- COMMENT 74: An expected schedule for the combined remedy in OU-1 and OU-2, exclusive of the regulatory process leading up to initiation of design, is included in the RFS. Note that the PRAP has added investigation and scope to the alternative recommended in the RFS.
- RESPONSE 74: The Department understands and recognizes the added investigation and scope to the remedy will take additional time.
- COMMENT 75: A transportation study regarding the handling of materials being brought into the site and leaving the site is specifically indicated in the RFS and will be part of the design process. The RFS assumptions provide a basis for comparison but do not limit the outcome of the transportation study.
- RESPONSE 75: The comment is noted
- COMMENT 76: Current Zoning and Uses. Portions of the site are no longer leased to other parties.
- RESPONSE 76: The comment is noted and the ROD has been revised to reflect this.

- COMMENT 77: Historical Uses. Wire manufacturing duration was much longer than the duration that manufacturing involving PCBs. PCBs were used in the manufacture of wire and cable only during the World War II period.
- RESPONSE 77: The comment is noted and the ROD has been revised to clarify that PCBs were only used during a portion of the operation period.
- COMMENT 78: Operable Units. This section describes "the site" as two operable units, however, in other sections OU-1 is described as "on site" while OU-2 is described as "off-site". The use of the word "site" in two different contexts is confusing. Note that there are some references to "on-site" within the document that specifically refer to OU-2. Also note that when the term "off-site" is used to reference OU-2 portions of the project the term should not reflect the status of ownership of said area.
- RESPONSE 78: The Department acknowledges this comment.
- COMMENT 79: Atlantic Richfield Company has in fact been participating in the site investigation and the remedy evaluation process for many years and voluntarily developed the feasibility study for OU-2.
- RESPONSE 79: The comment is noted the ROD was revised to reflect ARCO's voluntary efforts in developing the remedy for the site.
- COMMENT 80: Paragraph 6.3. It should be noted that specific fish advisories in the area of the site are primarily due to regional contamination issues and would remain in effect regardless of any remedial actions taken at this site.
- RESPONSE 80: The Department acknowledges that certain contaminants in the fish tissue of certain species are attributable to regional contamination issues. However it is not clear whether for certain species, the fish advisory would remain regardless of remedial actions taken at the site.
- COMMENT 81: Paragraph 6.4. Paragraph 6.1.2 states the contaminants of concern (COCs) as PCBs, copper, lead and zinc. Paragraph 6.4 re-states theses as the "primary" COCs for the site (previously defined as OU-1) and then describes a different list of COCs related to OU-1. Clarifying the terminology would assist understanding.
- RESPONSE 81: As stated in Exhibit A, primary contaminants of concern are those that drive the remedy. The COCs for OU1 and OU2 are slightly different because beryllium was found in OU1 soils but was not found in OU2.
- COMMENT 82: Paragraph 6.4. "Metals in sediment pose a toxicity threat to benthic organisms," Multiple investigations previously conducted indicate that

toxicity levels are significantly higher background. We have attached Dr. Jenkins' comments on this issue.

- RESPONSE 82: The metals remediation criteria in the PRAP are based on background concentrations of metals in the sediment. The use of a background concentration as a basis for cleanup concentrations is not based on toxicity but on the occurrence and concentration of the metals in the surrounding area. Toxicity testing conducted on the site was determined to be not sufficiently robust to develop a site-specific toxicity threshold.
- COMMENT 83: Paragraph 6.5. The RAOs assigned in the PRAP are generic and not Site-Specific. Due to the regional contamination issues, achievement of the specific objectives listed, especially for surface water, are not controlled by the site conditions. We have attached Dr. Magar's comments on this issue.
- RESPONSE 83: The comment is noted. However, the surface water contributions from the site will be controlled by the remedy. Baseline and long term monitoring will be implemented to determine the effectiveness of the remedy.
- COMMENT 84: Paragraph 1. The reference to the "FS" is presumed to be to the 2011 Revised Feasibility Study (RFS).
- RESPONSE 84: The comment is correct.
- COMMENT 85: Element 2. The Dense Non-Aqueous Phase Liquid (DNAPL) observed in OU-1 consists of approximately 30-40% PCBs dissolved in a solvent. The DNAPL occupies the void space within the existing fill otherwise occupied by water. The Revised Feasibility Study (2011) used the term "DNAPL" or Liquid PCB Material. Liquid PCBs were not used in the manufacturing process and have not been observed in OU-1 or OU-2. During the World War II era, PCBs were delivered to the site in the form of powder and then mixed with a solvent on site before application in the manufacturing process as a viscous cable coating for certain shipboard cables made for the United States Navy. This war time use of PCBs is the only known manufacturing use of PCBs in cable production at the site.
- RESPONSE 85: The comment is noted and the ROD was revised to eliminate references to "liquid PCBs" in favor of "Liquid PCB Material".
- COMMENT 86: Element 5. Text variations within the PRAP resulted in inconsistencies with respect to the proposed dredge in the Nearshore and Backwater areas. NYSDEC has prescribed specific areas of potential/anticipated additional dredging in the Old Marina and North Boat Slip that would be in addition to those described in Alternative 6 as shown on the PRAP Figure 7. This additional dredge scope is consistent with the description of the modified Alternative 6 found in exhibit B which states that "This alternative has been

modified from the alternative developed in the FS to include additional dredging in deepwater, old marina, and north boat slip areas, as shown on Figure 7." And goes on to explain that "This approach would dredge sediments in targeted areas which contain the most highly impacted sediment for PCB and metals and therefore presents a greater sediment volume than the original Alternative 6." To be consistent with the Exhibit B description and Figure 7, along with the associated volume and cost estimate presented in the PRAP, the description of the proposed remedy in this section should include a more precise description of the dredging limits required to satisfy the remedial goals. For example: "Removal of Nearshore and targeted Backwater sediment and fill..."

An updated figure titled Plan View Modified Alternative 6 (attached) shows the dredge extents proposed for Alternative 6 along with the additional areas delineated in Figure 7 of the PRAP. This would represent the anticipated dredge extents for the modified alternative 6 that was recommended in the PRAP.

- RESPONSE 86: The removal of sediment from the Backwater areas falls under the existing remedy component for sediment removal where silt curtains may be feasibly installed in less than 15 feet of water. The additional dredging scope was explicitly added to the alternative description in Exhibit B to clearly distinguish the PRAP alternative from the similar alternative developed in the FS.
- COMMENT 87: Element 6. The requirement for evaluation of alternative resuspension control designs is open ended. In order to maintain a reasonable project schedule, the extent of the evaluation should be limited to the current standard or proven practice for similar settings at the time the evaluation is conducted. As noted in the introduction of these comments, no feasible alternatives or proven technologies that would be appropriate for the existing river conditions were identified in the RFS process based on our contact with a supplier of mobile silt curtains. We have attached Dr. Palermo's comments on this issue.
- RESPONSE 87: The Department agrees that a limited evaluation will be performed regarding alternative resuspension control designs in the deepwater areas. This will include current standard or proven applications in similar settings.
- COMMENT 88: Element 7. We do not believe that additional sampling is required in the deepwater area because the data collected to date indicates a high degree of heterogeneity with average concentrations near background. The average surface sediment concentration of PCBs is 1.3 ppm outside of the currently proposed deepwater dredge areas which suggests that contamination is neither contiguous nor concentrated and that the distribution of the relatively few exceedances of 50 ppm are not significant or that dredging would be warranted in light of the negative short and long term impacts associated with dredging in these water depths. If additional sampling is included in the ROD,

it should be limited to delineating areas as shown on Figure 7 of the PRAP and where existing data indicates the potential need for targeted dredging. We have attached Dr. Magar's comments on this issue.

- RESPONSE 88: The Department will require additional sediment sampling to determine the distribution of PCB sediments in the deepwater areas to delineate areas to be dredged. This comment is also addressed in Responses 24, 58, 60, 61, 62 and 69.
- Element 9. Not all elements of an "isolation" cap as defined by the PRAP are COMMENT 89: necessary at all locations where remaining contamination is above background concentrations. The ROD should allow for the selection of backfill material and capping components to accommodate design for factors including erosion protection requirements (i.e. riprap) and residual contamination as well as provide flexibility for equivalent methods for chemical isolation and habitat creation. For example, areas subject to high erosion forces would require riprap or other appropriate erosion protection at the surface and would not allow for the placement and retention of a 24 inch habitat layer of fine grained silt. Additionally, the migration of divalent metals (including copper) from pore water is improbable and would not require a sand isolation layer in addition to the backfill. We have attached Dr. Reible's comments on this issue. Note that: It is known that this reach of the river has levels of total organic carbon (TOC) with a range of 2.2 - 3.2% (Llansó and Southerland, 2006). This range is considerably elevated compared to other sediment samples obtained from the Hudson (Llansó, R.J. and Southerland, M., 2006). In estuarine/marine systems, copper (Seligman and Zirino, 1998; 2002; Rivera-Duarte, 2006) and other metals (Di Toro et al., 2005;) are known to bind strongly to organic carbon and will be retained even under fairly rigorous extraction procedures (Daminouka and Katsiri, 2009). The likelihood of metals, particularly copper, desorbing from organic ligands in OU-2 sediment is therefore negligible. Previous studies that measured the capacity of naturally occurring sulfides (S-2) to bind divalent metals in both sediment grabs and cores showed that the vast majority of samples had concentrations of S-2 that were greatly in excess of the amount of metals that could be simultaneously extracted with acid (and therefore not bioavailable). Based on equilibrium partitioning sediment benchmarks derived for the protection of benthic organisms to metal mixtures, these levels of sulfides will afford considerable excess binding capacity of any freely dissolved divalent metals in pore water. In addition to this, the placement of backfill would inhibit overlying oxygen in the water column from diffusing into the naturally occurring sediment and therefore encourage anaerobic conditions which, in turn, will stimulate the generation of S-2. The latter would bind to divalent metals, rendering them immobile. Remedial design will consider backfill material and composition for factors including erosion protection requirements (i.e. riprap) and residual contamination concentrations. The ROD should provide flexible language similar the language in the OU-1 ROD

Amendment "The habitat/surface substrate layer will be designed to restore ..."

- RESPONSE 89: The PRAP identified isolation capping material, but did not specify the specific substrate that should be used for the site backfill. The substrates to be used for restoration will be determined during design and the substrates can vary depending on location in the River.
- COMMENT 90: Element 11.a. It is presumed that the phrase "remain in place" with respect to the sediment containment system does not include the habitat layer but rather is intended to ensure that the erosion protection and isolation layers remain in place and are effective.
- RESPONSE 90: The comment is correct and is intended for the erosion protection and isolation layers to remain in place. In addition, the habitat layer will be designed to remain in place.
- COMMENT 91: Element 11.a.i. The term Northwest Area is introduced in this paragraph and is not defined or shown on the figures. For the purposes of OU-2, it is presumed that this restriction applies to the Northwest Extension Area ("NEA") as defined in the PRAP. Restrictions on the currently existing land in OU-1 are addressed in the OU-1 Proposed ROD Modification.
- RESPONSE 91: This element was revised in the ROD to read "Northwest Extension Area", which is located in Operable Unit 2.
- COMMENT 92: Element 11.b. After remediation is complete, surface sediments and biota will continue to be affected over time by regional Hudson River contamination that is not associated with the Site, including regional PCB contamination. As a result, it is probable that neither (a) future monitoring of the presence and concentrations of contaminants in surficial sediment nor (b) future monitoring of fish and other migratory species tissue concentrations, or other biologic metrics will provide reliable indicators of the performance of the site remedy. Because these types of monitoring metrics cannot reliably distinguish between local site-related issues and regional contamination, any monitoring program should focus on other parameters, such as bathymetric analysis, to provide information about performance of the remedy. The ROD should provide for sufficient flexibility in the design of a long term monitoring program to allow for these issues to be evaluated during remedial design. For example, one approach to be considered is evaluating restoration of remediated areas by monitoring for re-colonization by native invertebrate communities. Re-colonization should be weighted more heavily as a monitoring metric than biotic tissue concentrations because of known and ongoing PCB flux from upstream sources and ongoing remediation. Similarly, if re-colonization occurs, benthic macroinvertebrate body burdens should be considered as a more reliable line of evidence for potential site-

related contributions of PCB to biota than would tissue concentrations of other aquatic species. However, benthic macroinvertebrate data would need to be evaluated in the context of sediment and porewater vertical profiles and any protocol for such evaluation must take into account the potential for postremediation contamination of surficial sediments through deposition from regional non-site related sources. Fish tissue PCB concentrations should not be considered for monitoring remedy effectiveness because of the conditions throughout the river. Surface water quality compliance is difficult to measure at the SCG (0.001 parts per trillion). Surface water measurements are potentially confounded by inclusion of suspended particles, which may emanate from multiple sources, including sources unrelated to the site. An apparent absence of migration of site contaminants through porewater to surface water should preclude the need for monitoring biotic tissue, recognizing that the potential tissue concentrations to be influenced by other in-river sources. We have attached Dr. Magar's comments on this issue.

- RESPONSE 92: The Department disagrees with the comment regarding the ability of the long term monitoring to be able to distinguish between the site specific PCB sources and those unrelated to the site. Fish tissue samples have been analyzed previously in areas adjacent to the site and have shown site specific influences from the site. The results are reported in the Department's report *1999 As A Special Spatial Year For PCBs in Hudson River Fish*, May 2002.
- COMMENT 93: Element 11.b.i and 11.b.ii. The specific baseline and long-term sampling requirements should be developed during design and should consider methods that would provide reliable conclusions that consider regional contamination impacts. We have attached Dr. Magar's comments on this issue.
- RESPONSE 93: The Department agrees with the comment that baseline and long-term monitoring should consider methods that would provide reliable conclusions that consider regional contamination impacts.
- COMMENT 94: Element 11.c.ii. Regarding "maintaining site access controls", there are no site access controls currently in place for OU-2. A perimeter fence exists in OU-1 along the shore but will be removed as part of the OU-1 remedy implementation.
- RESPONSE 94: The comment is noted and the ROD has been revised to reflect this understanding.
- COMMENT 95: Page 2. Note that OU-2 samples containing PCB Material have only observed Semi-Solid or Trace PCB Material. No DNAPL has been observed in sediment samples.

- RESPONSE 95: The Department does not disagree with the comment that no liquid PCB material have been observed in sediment samples, however the investigation of sediments beneath the rip rap slope has been limited by the inability to obtain samples.
- COMMENT 96: Page 3. Surface Water data as summarized on page 3 and in Table 1 requires additional analysis since the conclusions presented are not consistent with other data. Specifically: PCBs; We do not agree with the PRAP's conclusion regarding Surface Water that the degree of chlorination "...results suggest that the Site is the source of PCB contamination in the Hudson River." Any conclusions regarding the source of PCBs within a regional water system like the Hudson River, where there are multiple sources, must be carefully analyzed based on the weight of evidence. For example, while PCBs may be present in samples taken from different locations, sampling results may show differing congener patters, differing degrees of chlorination, or different weathering patterns each of which must be accounted for in attempting to correlate any result to a particular "source." Once in the environment the composition of PCBs changes over time due to various physicochemical properties and biological processes: vapor pressure, solubility, octanol-water partitioning, adsorption, and biodegradation. As the number of chlorine atoms increases, both vapor pressure and water solubility decrease, while adsorption and the octanol-water partitioning coefficient increase. Dechlorination of PCBs occurs primarily through aerobic and anaerobic microbial degradation. Aerobic bacteria preferentially dechlorinate less-chlorinated PCBs resulting in an increase in the degree of chlorination residual over time (i.e., within decades a less chlorinated Aroclor will look more like a more chlorinated Aroclor). Anaerobic bacteria preferentially dechlorinate more highly chlorinated PCBs, mainly by replacement of meta and para positioned chlorine atoms with hydrogen atoms, resulting in predominately ortho substituted mono- through tetra-chlorobiphenyls (i.e., a more chlorinated Aroclor will look more like a less chlorinated Aroclor over time). Additionally, less-chlorinated PCB congeners are less persistent in the environment due to volatilization and solubility; more-chlorinated PCBs are more persistent in the environment due to adsorption. Therefore, over time, under common sediment conditions, an initial release of a less chlorinated Aroclor will often subsequently "weather" in the environment such that sediment samples will present as a more chlorinated Aroclor in laboratory analyses. In summary, the composition of an original PCB mixture released to the environment can be expected to change due to a combination of the processes mentioned above. Therefore, any attempt to determine the source of the PCBs or Aroclors identified in an environmental sample must be approached with caution. Furthermore, Hudson River PCB concentrations show that surface water sample concentrations sampled at the Site are consistent with background concentrations based on all sample locations from 1975 through 2007, summarized in the Injury Determination Report Hudson River Surface Water Resources, Hudson River Natural Resource Damage

Assessment. In addition, surface water PCB concentrations show significantly higher PCB concentrations at upstream sampling locations. Site concentrations show Site levels are consistent with sampling locations immediately upstream and immediately downstream. Therefore, Site surface water PCB concentrations are at, and in most cases below, background PCB levels which suggests that the Site is not a significant contributor of PCBs to the Hudson River. Also note that Site PCB data reports the concentrations of PCBs as Aroclors, whereas the recent NYSDEC results reports the concentrations of PCBs as congeners. During performance studies conducted by EPA for the development of EPA Method 8082, the concentrations determined as Aroclors were larger than those obtained using the congener method, which suggests that Site PCB concentrations reported as Aroclors may be biased high. It should also be considered that, based on initial hydraulic calculations, the pore water volume exiting the site is a small fraction of the surface water and would not be capable of significantly changing the surface water concentrations from background or impacting surface water to the levels indicated in the samples presented within the PRAP. It is unclear if adequate precautions were taken to acquire samples at a location where interference from bottom sediments were eliminated to avoid samples results that were biased high.

- RESPONSE 96: The comment is noted.
- COMMENT 97: Lead; We do not agree with the conclusion that "The primary surface water contaminants are...lead associated with historical manufacturing and disposal at the site." Based on Gibbs (1994), total suspended sediment concentrations 1 meter above the river bottom increased from approximately 10 mg/kg at the ocean (Varrazano Narrows Bridge, ~45-50 km downstream) to 140 mg/kg in the middle of Haverstraw Bay (~25 km upstream). This work also demonstrated that suspended sediments have metal concentrations much higher (2 to 3 orders of magnitude) than bottom sediments. Site, total and dissolved, lead porewater concentrations as shown in Appendix C of the Field Work Summary Report for Fall 2004 Atlantic Richfield Supplemental Offshore Investigation Former Anaconda Plant Site Operable Unit No. 2 report were reviewed. For the 18 samples collected, all dissolved lead concentrations ranged from non-detect (<0.24 ug/L) to 1.9 µg/L, well below the SCG lead value of 8 μ g/L. The total pore water lead concentration averaged 4.7 µg/L and ranged from 0.5 µg/L to 13.2 µg/L; only one sample, which measured 13.2 µg/L lead and was collected in one area south of the south boat slip, exceeded the SCG lead value of 8 μ g/L. Given the low Site pore water lead concentrations and the study performed by Gibbs, demonstrating an increase in suspended sediments concentration and associated metals concentration further upstream, one can conclude that the Site is not a significant contributor of lead to the Hudson River.

- RESPONSE 97: The Department has a different interpretation of the article by Gibbs. The suspended sediment concentrations measured in the water column for lead will be different from the lead concentration measured in the sediment next to the site. The Department maintains that the lead concentrations found in the sediments near the site are primarily from Harbor at Hastings source areas in OU1, which were identified and found to be related to the former manufacturing and direct discharges into the Hudson River.
- COMMENT 98: Page 4. Movement of PCB Material as DNAPL through the fill in OU-1 has historically occurred vertically and, to a limited extent, horizontally along the interface with the Marine Silt. It appears that there has been some historical movement of DNAPL along the Marine Silt interface near the boundary between OU-1 and OU-2. However, there are also other transport mechanisms by which PCBs were likely deposited in OU-2. For example, PCB Material was likely associated with the outfalls of pipes associated with Building 52 and other manufacturing operations on OU-1. In addition, historic activities such as the mixing of PCB manufacturing ingredients along the Northwest Corner may have resulted in the overland transport of PCBs to the River, and other historic activities along the old dock and pier structures may also have resulted in PCB deposition in river sediments. Finally, prior to the installation of the IRM in the northwest corner, PCB contaminated soils may have washed or eroded from the upland surface soils.
- RESPONSE 98: The comment is noted and the ROD has been revised accordingly.
- Page 4, "Screening Criteria for Metals". As noted in the RFS, the ER-L and COMMENT 99: ER-M values do not account for site-specific conditions. These values are typically used to initially identify contaminated sediment. As stated in the 1999 NYSDEC Technical Guidance for Screening Contaminated Sediments, "Once a sediment has been identified as contaminated, a site-specific evaluation procedure must be employed to quantify the level of risk, establish remediation goals, and determine the appropriate risk management actions. The site-specific evaluation might include for example: additional chemical testing: sediment toxicity testing: or sediment bioaccumulation tests". If criteria are exceeded then sediment contamination is quantified, evaluated with respect to exposure to biota and the significance of exceedances are described in terms of the predicted effects. The guidance also states that "If sediment concentrations of a compound are less than all of the sediment criteria for that substance, aquatic resources can be considered to be not at risk (from that compound)." Given this procedure for evaluating sediments, if the sediment is not considered or shown to be a risk, then remedial action is not necessary. A discussion of previous studies and standard practices is provided hereafter as it pertains to toxicity evaluation of metals in sediment. The biogeochemistry of sediments influences environmental risk for metals contaminants more than for any other category of environmental contaminants. The PRAP includes provisions for remedial goals based on

background, or ambient concentrations of metals in sediments. Based on empirical evidence and relevant site characteristics, metals in OU-2 sediments are expected to pose no risk to human health or the environment at concentrations much greater than background or ambient concentrations. The proper evaluation of environmental risks caused by sediment contamination typically requires the evaluation of three lines-of-evidence: bulk sediment chemistry, sediment toxicity, and the native benthic invertebrate community. These three lines of evidence (LOEs) (often referred to as a Sediment Quality Triad or SQT) are then evaluated relative to a background or 'reference' area(s), to make an overall conclusion (i.e. a 'weight-of-evidence' or WOE) about risks that contaminated sediments pose to ecological receptors.

Accordingly, remedial goals should consider actual risks to human health and the environment associated with sediment, acknowledging that background conditions may constrain the levels to which cleanup can be sustained. Because of the many factors governing the potential toxicity of metals in sediments, sediment quality values (SQVs) are particularly suspect for metals, and therefore inadequate for basing remedial action decisions without supporting lines of evidence. If toxicity and benthic community results were to reflect an absence of chemical affect on the sediment habitat, metals concentrations exceeding SQVs should not be given greater weight than the other biological lines of evidence. Studies within OU-2 (e.g., Llansó and Southerland, 2006; BB&L, 2006) have identified conditions that indicate a reduction in both the surface sediment concentrations and potential risks of divalent metals (and also PCBs) in the biologically active sediment zone, including:

Deposition of sediments at background concentrations: the OU-2 reach adjacent to the site is "depositional," accumulating suspended sediment from upstream sources (~1 inch/year based on the RI). Ongoing deposition has resulted in levels of constituents of potential concern (CPOCs) that are near background conditions.

Elevated TOC: levels of total organic carbon are greater than most Hudson River reaches (recent data suggests an average of 2.96%), which aids in binding contaminants in sediments, reducing bioavailability to invertebrates and fish; and

Strongly reducing conditions in sediment and a marked excess of acid-volatile (AVS): both contribute to limit or eliminate metals bioavailability - no benthic toxicity is predicted for this type of sediment per the USEPA metals mixtures guidance and should be taken into consideration at this site.

It should also be noted that non-chemical stressors at OU-2 likely affect the benthic community more than site-related COPCs. The degraded conditions at 'reference' locations support this conclusion (e.g., at Greystone.) Also note that the native benthic communities are similar at locations upstream and downstream of OU-2.

It is important that metrics that consider the above lines of evidence be included as a component of remedy selection activities. We have attached Dr. Jenkin's comments on this issue.

- RESPONSE 99: This statement is not an accurate summary of the sediment criteria. The criteria indicate a need for analysis of potential toxicity is necessary if the criteria are exceeded. A lack of appropriate investigation cannot be used as a basis to assume the lack of risk from exceedance of the criteria. Toxicity and AVS/SEM testing at this site were not sufficiently robust to determine a site-specific toxicity threshold. Therefore, there has been no demonstration that site-specific factors are ameliorating the expected effects associated with metals concentrations above the sediment criteria.
- COMMENT 100: Page 4 "Background Contamination" We note that Site Specific Background Values attributed to our site are similar to background values identified in the TAPPAN ZEE HUDSON RIVER CROSSING PROJECT Draft Environmental Impact Statement. The 95th Percentile concentrations for the 313 samples analyzed for the Tappan Zee Bridge were similar to the background samples selected for OU-2. This data shows that the concentrations upriver of OU-2 were much higher than background in some locations: Copper 1,550 ppm Lead 604 ppm Zinc 399 ppm PCBs 1.2 ppm
- RESPONSE 100: The comment is noted. The Department also notes that the cited values are the maximum values of the Tappan Zee DEIS data set, and may have been taken from a distinct source area that does not represent the potential for remediated sediments to be recontaminated.
- COMMENT 101: Table 1. The text indicates the maximum detection was 62.4 ppt, the table indicates 57.0 ppt.
- RESPONSE 101: The correction was made in the ROD.
- COMMENT 102: Table 2 footnotes, last sentence. "If only the ER-L is impacted ..." should read "If only the ER-L is exceeded ..."
- RESPONSE 102: The correction was made in the ROD.
- COMMENT 103: Table 3. Note that a site-specific organic carbon content of 2.96% was measured in more recent investigations which would raise the site-specific screening criteria applicable to this project.

- RESPONSE 103: The Department used the organic carbon content value of 2.43% which represents all the reported values including the more recent investigations.
- COMMENT 104: Northwest Extension Area. The term "sealed sheet pile wall" is presumed to mean a sheet pile wall with sealed joints as described in the RFS.

RESPONSE 104: Yes.

- COMMENT 105: Alternative 6. Clarification. The text refers to "site-specific cleanup goals" in Table 2. Based on Figure 2 it appears that the 95th percentile value in the column labeled "Site Derived Value" in Table 2 is the reference. The ROD should explicitly state the Site-specific Cleanup Levels. The values stated by NYSDEC during the Public Meeting were as follows: Copper 129 ppm Lead 132 ppm Zinc 234 ppm
- RESPONSE 105: Footnote c of Table 2 indicates that the site-derived cleanup values are the range of the 90th to 95th percentile values of the background data set.
- COMMENT 106: The reference in the first paragraph to Section 7.2 is presumed to be a reference to Section 7 of the PRAP.
- RESPONSE 106: The correction is noted and incorporated into the ROD.
- COMMENT 107: Basis for Selection, 2nd paragraph, 5th line. Regarding the statement that "Dredging to a depth of 6 feet removes sediment that has the potential to be scoured and migrate." The preceding sentence implies this statement is applicable to both nearshore and backwater areas. In the backwater areas, the natural deposition cited in other sections does not indicate that scour is likely to a depth of 6 feet. Preliminary estimates do not indicate that scour in the nearshore would reach 6 feet and wherever dredging and backfill occurs the backfill will be designed for the river conditions, therefore, dredge to 6 feet is not required to eliminate the potential for scour of contaminated sediment. We have attached Dr. Reible's comments on this issue.
- RESPONSE 107: The comment is noted and the ROD is modified to include additional language to justify the removal of sediments to 6 feet. The decision to select the 6 feet is based on the removal of sediment to pre-release conditions to the extent feasible, consistent with the remainder of the site.

COMMENT 108: Criteria 1. The correct increased cost for Alternative 9 is \$140 million.

RESPONSE 108: The correction was made in the ROD

- COMMENT 109: Figure A. The areas identified as Northwest Off-shore and On-shore Area are presumed to be the Northwest Corner Off-shore and On-shore Areas.
- RESPONSE 109: The correction was made in the ROD
- COMMENT 110: Note that Atlantic Richfield Company has not declined to implement a remedial program as stated.
- RESPONSE 110: The OU1 ROD Amendment is modified to reflect that ARCO has agreed to implement the OU1 remedial program. The OU2 ROD was revised to state that the PRPs for the site declined to implement the remedial investigation and feasibility study portion of the remedial program for OU2 when first requested by the Department. Since 2003 the PRPs have voluntarily performed additional investigations and submitted work plans and reports which include a feasibility study to advance the remedial program.
- COMMENT 111: Paragraph 6.1.2. The DNAPL is a PCB mixture, not liquid PCBs. Only Semi-Solid and Trace PCB Material has been observed in sediment. The potential presence of DNAPL (i.e. Liquid PCB Material) beneath the rip-rap has been assumed by NYSDEC but has not yet been confirmed.
- RESPONSE111: The comment is correct concerning the Department's expectation of the presence of Liquid PCB Material beneath the rip-rap based on the finding of this material in close proximity to the shoreline. Further delineation will be performed in this area to verify this expectation.
- COMMENT 112: Paragraph 6.4. It should be noted that beryllium in groundwater was only slightly exceeded in one out of twenty samples and was non-detect in 20 pore water samples collected during the 2005 OU-2 sampling event. Existing conditions do not suggest the need to include beryllium in long term monitoring plans.
- RESPONSE 112: The Department believes that beryllium should be included as a baseline monitoring parameter in the long term monitoring plan. If it is not detected, the monitoring plan may be revised to omit it.
- COMMENT 113: Paragraph 6.4. It should be noted that PCBs in groundwater are limited by the extremely low solubility of site-specific Aroclors that are associated with the DNAPL and the mobility of local concentrations is restricted by other site factors including organic content of the soil.
- RESPONSE 113: The statements in the comment are accurate, however, PCBs have been detected in unfiltered groundwater samples at the site which exceed the Department's ambient groundwater standards. The selected remedy is intended to prevent contaminated groundwater from leaving the site, and monitoring will be performed to identify PCB concentrations in groundwater.

- COMMENT 114: Paragraph 7.2. As previously noted, the presence of Liquid PCB Material offshore has not been confirmed. Semi-Solid PCB Material has been observed but "PCB DNAPL" has not been "found beneath the river".
- RESPONSE 114: See Response #111
- COMMENT 115: Paragraph 7.3. Since the westward extent of the DNAPL is unconfirmed, we believe that once the area is accessible during construction, delineation should precede installation of recovery wells.
- RESPONSE 115: The Department agrees that delineation of PCB/ DNAPL will precede installation of recovery wells.
- COMMENT 116: Paragraph 7.3. The sentence "The containment element for the Northwest On-Site Contamination (formerly identified as the Northwest Corner and Northern Shoreline Area)..." uses an undefined Northwest On-site Contamination term. It is presumed that this statement should be as follows "The containment element for the northwest on-site contamination (formerly identified within the Northwest Corner and Northern Shoreline Area)..."
- RESPONSE 116: The comment is correct and the change will be incorporated into the ROD Amendment.
- COMMENT 117: Element 2. Note that one of the "additional scope" items referred to in Section 8, Paragraph 7 is an expansion of the extent of excavation (and therefore the areas) in the Northwest Corner and Northern Shoreline areas (see Figure 2 comment below).
- RESPONSE 117: The Department acknowledges this increased scope based on the additional information gathered during the pre-design investigations. Although the excavation criteria have not changed, the increased extent will be noted in the ROD Amendment.
- COMMENT 118: Element 5. The term "sealed sheet pile wall" is presumed to mean a sheet pile wall with sealed joints as described in the RFS.

RESPONSE 118: Agreed.

- COMMENT 119: Element 6. We propose the ROD incorporate the flexibility to accommodate constructability limitations, e.g. "eliminate to the extent practicable any additional fill material..."
- RESPONSE 119: The Department agrees with the concept of maintaining flexibility to accommodate constructability limitations during remedial design. There will likely be modifications to the remedial design which were not anticipated at

the issuance of the Record of Decision. These will be documented and addressed on a case by case basis and the Department will follow its guidance and policy regarding such modifications.

- COMMENT 120: Element 7. Operation of recovery systems should be continued only as long as recoverable DNAPL is observed.
- RESPONSE 120: The shutdown criteria for recovery of DNAPL will be identified in the Site Management Plan. Recoverable DNAPL will be defined and provisions will be included which identify periodic monitoring to determine if the shutdown criteria is acceptable or additional recovery is necessary.
- COMMENT 121: Element 10.bi. Groundwater quality and elevation monitoring does not provide data regarding the remedy performance and should not be required for such purposes. The compliance monitoring in Paragraph 10.c.i would provide the required data.
- RESPONSE 121: The Department disagrees with the comment. Groundwater quality and elevation monitoring will be needed to evaluate the remedy performance and evaluate any corrective measures needed should they arise in the future. The Department is willing to evaluate and reduce the frequency based on the results obtained.
- COMMENT 122: Element 10.b. Consideration should be given to regional contamination when establishing long term monitoring and criteria for groundwater discharged from the Northwest Extension Area. Groundwater treatment may not be necessary based on the extremely low solubility of site-specific Aroclors that are associated with the DNAPL and their concentrations relative to background surface water contamination.
- RESPONSE 122: The PCB groundwater results will be evaluated and used to determine appropriate treatment of groundwater. The PCB groundwater results from the site indicate that levels exceed New York State Ambient Groundwater Standards.
- COMMENT 123: Element 10.b.iv is presumed to be part of the previous bullet.
- RESPONSE 123: The correction was made in the ROD
- COMMENT 124: Figure 2. An updated version of Figure 2 that has been updated for the new data and uses the nomenclature in the text of the proposed modification is attached.
- RESPONSE 124: The revised figure will be included.

APPENDIX B

Administrative Record

Administrative Record

Harbor at Hastings Operable Unit No. 1 State Superfund Project Village of Hastings on Hudson, Westchester County, New York Site No. 360022

- 1. Proposed Remedial Action Plan for the Harbor at Hastings site, Operable Unit No.1, dated October 2003, prepared by the NYSDEC.
- Record of Decision, Harbor at Hastings Site, Operable Unit No.1, dated March 2004, prepared by the NYSDEC and includes Appendix D, Administrative Record (Appendix D attached)
- 3. Proposed Record of Decision Amendment for the Harbor at Hastings site, Operable Unit No.1, dated January 2012, prepared by the NYSDEC
- 4. Order on Consent between NYSDEC and Atlantic Richfield Company, executed on November 16, 1995
- 5. Order on Consent between NYSDEC and Atlantic Richfield Company, executed on March 25, 2005
- 6. Remedial Design Work Plan, Haley & Aldrich, May 2005
- 7. 50% Design Report for Operable Unit No.1 (OU1), Former Anaconda Wire and Cable Plant Site, NYSDEC Site # 3-60-22, Volumes I, July 2006
- 8. 50% Design Report for Operable Unit No.1 (OU1), Former Anaconda Wire and Cable Plant Site, NYSDEC Site # 3-60-22, Volume II, July 2006
- 9. 50% Design Report for Operable Unit No.1 (OU1), Former Anaconda Wire and Cable Plant Site, NYSDEC Site # 3-60-22, Volume III, July 2006
- Supplemental Northwest Corner Investigation Findings Report, NYSDEC Site # 3-60-22, January 2009
- 11. DNAPL Interim Remedial Measures Workplan, Former Anaconda Wire and Cable Plant Site, Hastings-on-Hudson, New York, NYSDEC Site # 3-60-22, July 2009
- 12. Revised Feasibility Study OU2, Haley & Aldrich, October 2011

- 13. Letter dated February 1, 2012 from Jacques Padawer, Ph. D
- 14. Letter dated February 29, 2012 from Jeremiah Quinlan, Village of Hastings-on-Hudson Trustee
- 15. Letter dated March 9, 2012 from Eric Larson with ARCO, including attachments
- 16. Letter dated March 9, 2012 Ms. Eileen Bedell, owner of the Hudson Valley Health & Tennis Club, including attachment
- 17. Letter dated March 12, 2012 from Daniel E. Estrin and Justin Davidson with the Pace Environmental litigation Clinic, Inc. representing Riverkeeper, Inc., including Exhibits