White Plains, NY 10601

High Street Field Visit Memo Addendum

To: Village of Hastings on Hudson
From: Sam Schwartz Engineering, DPC
Date: September 1, 2020
Re: High Street Field Observations
Project No: 17-01-2681

1. Overview

Sam Schwartz Engineering, DPC ("Sam Schwartz") has been asked to evaluate traffic operations and safety at two (2) intersections along High Street in the Village of Hastings-onHudson as an addendum to the "High Street Field Visit" memorandum submitted July 10, 2020. The intersections evaluated in this document are the intersections of Harvard Lane and High Street as well as Hall Place and High Street.

As part of the evaluation, Sam Schwartz reviewed traffic volume data, crash data, and conducted field measurements and observations. The information was collected to determine the need for safety improvements and assess operational impacts of improvements along the corridor. Improvements evaluated included implementing all-way stop control at each of the intersections, prohibiting parking in certain locations, and installing pedestrian infrastructure along the corridor. This memorandum documents these efforts and the results of the analyses performed.

2. Existing Conditions

On August 19, 2020, Sam Schwartz conducted field observations and measurements of stopping sight distance deficiencies and parking restrictions.

High Street is an eastbound/westbound two-lane municipal collector with no marked shoulders and a 22-foot wide pavement width with one 11-foot lane in each direction. The posted speed within the study area is 25 MPH . Parking is permitted along the westbound side High Street except for prohibited parking 175 feet east and 130 feet west of Hall Place.

Traffic flow along High Street at the Hall Place and Harvard Lane intersections is uninterrupted, with no stop signs, yield signs, or traffic signals. High Street turns sharply at Hall Place creating an approximate 105-degree turn with an approximate curve radius of 65 feet. Hall Place and Harvard Lane are stop controlled to give High Street traffic the right of way. Both streets support two-way traffic, although Hall Place has no through traffic and only serves five homes on a cul-de-sac.

On a field visit on March 4, 2020, several children were observed crossing or walking along High Street as part of their morning routine getting to school. On High Street between Farragut Avenue and Broadway, there is one walkway segment along the north curb line from Rose Street to James Street. Aside from this location, there are no curb ramps or crosswalks along
major and minor streets. Intersection measurements and aerial images can be found in Appendix A.

3. Preliminary Safety and Complete Streets Analysis

Crash data and field observations were also reviewed to evaluate vehicular and pedestrian safety along the corridor and the area surrounding it. Pedestrians observed during the March 2020 field visit included children on their way to school, people walking their dogs, and adults presumably going to work. High Street has minimal pedestrian facilities and no marked shoulders, forcing these pedestrians to walk in the travel lanes. These conditions are not compliant with the Village of Hastings-on-Hudson Complete Streets Policy, which was adopted in October of 2014.

Further, there have been 22 bicycle and pedestrian crashes from years 2015 to 2019 along High Street and its intersecting roads, with one crash occurring on High Street at Hall Place in March 2019. Almost half of the total crashes (10) occurred between 7:30-8:30 AM and 3:004:00PM, when there are likely to be higher volumes of walking schoolchildren and motor vehicles. A detailed vehicle crash analysis was not completed as part of this evaluation.

The safety of pedestrians in the Hastings-on-Hudson community would be improved by implementing pedestrian infrastructure, like sidewalks and marked crosswalks, that connect residential communities and high pedestrian trip generators such as schools, parks, and transit.

4. Traffic Control Warrants and Traffic Volume Review

Consideration was given to implementing all-way stop control at the intersection of High Street and Hall Place and the intersection of High Street and Harvard Lane. The FHWA Manual on Uniform Traffic Control Devices (MUTCD) guidance (Section 2B.07) was utilized to determine if an all-way stop condition should be installed at the two intersections. The evaluation was performed using 2020 traffic growth estimates from New York State Department of Transportation (NYSDOT) Traffic Count Hourly Report Data and is included in Appendix B.

The threshold for implementing all-way stop control based on traffic volume in Section 2B. 07 of the MUTCD reads, "The vehicular volume entering the intersection from the major street approaches (total of both approaches) average at least 300 vehicles per hour for any 8 hours of an average day; and The combined vehicular, pedestrian, and bicycle volume entering the intersection from the minor street approaches (total of both approaches) average at least 200 units per hour for the same 8 hours, with an average delay to minor-street vehicular traffic of at least 30 seconds per vehicle during the highest hour."

As discussed in the "High Street Field Visit" Memorandum dated July 10, 2020, High Street is not estimated to have an average of 300 or more vehicles per hour for 8 hours during a typical day, even when using conservative calculations to account for population growth and seasonal traffic patterns. Traffic volume estimates with seasonal and population growth adjustments are included in Appendix B. Additionally, the minor street approach at Hall Place and Harvard Lane are not likely to have enough vehicle, pedestrian, and bicycle volumes to warrant an all-way stop control as a minor street. Therefore, traffic volumes are not a basis for recommending an
all-way stop at the intersection of High Street and Hall Place or the intersection of High Street and Harvard Lane.

5. Stopping Sight Distance Deficiencies

Per the MUTCD (Section 2B.07.05), "Locations where a road user, after stopping, cannot see conflicting traffic and is not able to negotiate the intersection unless conflicting cross traffic is also required to stop" are candidates for multi-way stop sign applications. Field observations and measurements were taken to evaluate the current sight distance from Hall Place and Harvard Lane onto High Street. High Street and Harvard Lane was observed to have insufficient sight distances.

Sight distance standards are calculated using the speed of the road, type of traffic control, and typical reaction time to give vehicles adequate opportunity to avoid collision while maneuvering through an intersection. The sight distance standards on High Street were determined by NYSDOT Highway Design Manual guidelines for scenarios with minor street stop control and a design speed of 30 miles per hour (roadway speed limits are generally posted 5 MPH below the design speed). In these conditions, 355 feet of sight distance is required to the right in order to execute a left turn, and 290 feet of sight distance is required to the left in order to execute a right turn.

Based on our field observations, Harvard Lane does not have adequate sight distance due to the surrounding elevated landscape. The stopping sight distance at Harvard Place was further obstructed due to shrubbery west of the intersection. At Hall Place, substandard sight distance was not observed in the field, however, potential parking obstructions on the westbound side of High Street are a cause for concern. If a vehicle is parked at the regulatory parking sign 175 feet east of the Hall Place intersection, the sight distance could potentially be 250 feet rather than the standard of 295 feet. Due to the contradictory in field observation, Sam Schwartz will practice its engineering judgement and not recommend a stop sign at this location due to sight distance. Graphics depicting the stopping sight distance at these intersections can be found in

Appendix C.

To address stopping sight distance deficiencies at Harvard Lane, measures may be taken including roadway realignment, grading, speed limit adjustments, and altering traffic controls at intersections. Converting this intersection to all-way stop control would eliminate the need for stopping sight distance requirements at the minor approach. Implementing an all-way stop control may be the most feasible and cost-effective measure to address stopping sight distance deficiencies at Harvard Lane. At Hall Place, if there are continued concerns regarding sight distance, the most cost-effective measure may be restricting on-street parking 225 feet east from the intersection, or 15 feet east of the fire hydrant.

6. High Street Geometric Deficiencies

According to the NYSDOT Highway Design Manual guidelines Exhibit 2-6 as a Non-NHS collector, High Street should have a minimum curve radius of 176 feet as a 30 MPH design speed roadway assuming 4\% e max . See Appendix D for the NYSDOT Highway Design Manual Exhibit 2-6 for applicable geometric design guides. At the sharp turn of High Street at Hall Place, the curve radius is approximately 65 feet, which is substandard for the current design
speed of 30 MPH . Per the latest edition of the American Association of State Highway and Transportation Officials' (AASHTO) "A Policy on Geometric Design of Highways and Streets" Equation 3-8 and Table 3-7, for a curve with a radius of 65 feet, $4 \% \mathrm{e}_{\max }$, and side friction factor of 0.30 , the calculated design speed of the curve is 18.2 MPH . As the posted or advisory speed should be less than the design speed, the recommended advisory speed at this location is 15 MPH.

The horizontal curve along High Street at Hall Place has a substandard curve radius for the design speed of High Street, which may cause safety issues at this location. The difference between the speed limit and the recommended advisory speed at this location is 15 MPH. Per MUTCD Table 2C-5, the difference between the speed limit and advisory speed mandates the installation of Turn (W1-1) signs and an Advisory Speed Plaque (W13-1P) signs. It also is recommended per the same MUTCD table that Chevron (W1-8) and/or One Direction Large Arrow (W1-6) signs are implemented.

7. Recommendations

Per our assessment, implementation of an all-way stop control at the intersection of High Street and Harvard Lane may be feasible. Implementing all-way stop control at Harvard Lane would eliminate the need for sight distance improvements along High Street and would allow vehicles from minor streets to maneuver through the intersection more safely. At Hall Place, High Street has too small a curve radius for its design speed of 30 MPH , and based on the existing curve radius, the advisory travel speed at this location should be 15 MPH . Due to the difference between posted and advisory speeds, the MUTCD requires Turn (W1-1) signs and Advisory Speed Plaque (W13-1P) signs in both directions, and Sam Schwartz recommends One Direction Large Arrow (W1-6) signs.

Given the presence of pedestrians and the Village of Hastings-on-Hudson's Complete Streets Policy, it is recommended that Americans with Disabilities (ADA) compliant pedestrian facilities, including curb ramps, crosswalks and sidewalks be implemented in this area. Next steps should include the design of these facilities, which will require a field survey to determine Right-of-Way constraints, subsurface utilities, ground utilities, and roadway elevation.

Appendix A

Appendix B

Traffic Count Hourly Report

ROAD \#:	ROAD NAME: HIGH ST	FROM: JAMES ST	TO: ROSE ST	COUNTY:	Westchester
DIRECTION: Eastbound	FACTOR GROUP: 30	REC. SERIAL \#: JA97	FUNC. CLASS: 19	VILLAGE:	
STATE DIR CODE: 6	WK OF YR: 34	PLACEMENT: 107 Ft E of James Street	NHS: no	LION\#:	
DATE OF COUNT: 08/17/2015		@ REF MARKER:	JURIS: County	BIN:	
NOTES LANE 1:		ADDL DATA:	CC Stn:	RR CROSSING:	

COUNT TAKEN BY: ORG CODE: TDB INITIALS: dja

ADDL DATA.
PROCESSED BY: ORG CODE: DOT INITIALS: KCF

RR CROSSING:
BATCH ID: DOT-R08V34ETDB515A1PMS SAMPLE

ROAD \#:	ROAD NAME: HIGH ST	FROM: JAMES ST	COUNTY:
STATION:	$\mathbf{8 7 5 5 5 1}$	STATE DIR CODE: $\mathbf{6}$	PLACEMENT: $\mathbf{1 0 7}$ Ft E of James Street

Traffic Count Hourly Report

COUNT TAKEN BY: ORG CODE: TDB INITIALS: dja

ADDL DATA
COUNT TYPE: AXLE PAIRS

RR CROSSING:
BATCH ID: DOT-R08V34ETDB515G1PMS SAMPLE:

ROAD \#:	ROAD NAME: HIGH ST	FROM: JAMES ST
STATION: 875551	STATE	COUNTY:
Westchester		

High Street from James Street to Rose Street - August 2015

High Street from James Street to Rose Street - August 2020 Volume Adjustment

High Street from James Street to Rose Street - 2020 School Year Adjustment

Appendix C

High Street and Harvard Lane Sight Distance

Appendix D

Exhibit 2-6 Design Criteria for Non-NHS Rural Town, Suburban, Urban, and Urban Core Collectors

Lanes ${ }^{1,2}$						Width (ft.)	
Travel Lanes (with curb)						Minimum	Desirable
Residential and commercial areas						10	12
Routes designated as Qualifying Highways on the National Network (1982 STAA Highways)						12	-
Industrial area without severe ROW limitations;						12	-
Industrial area with severe ROW limitations						11	-
Wide curb lane that will accommodate cyclists, per HDM §2.6.2.1						13^{3}	15
Travel Lanes (uncurbed)						Refer to Exhibit 2-5	
Bicycle Lane (dedicated preferential use travel lane for bicycling)						5^{3}	6-7 ${ }^{4}$
Turning Lanes						Minimum	Desirable
Truck volume $\leq 2 \%$						10	12
Truck volume > 2\%						11	12
Two-way left-turn lanes (trucks $\leq 2 \%$)						10	16
Two-way left-turn lanes (trucks > 2\%)						11	16
Parking Lanes Residential area Commercial / industrial areas						Minimum	Desirable
						7	8
						8	11
Shoulders ${ }^{1,2}$						Width (ft.)	
Curbed Left shoulder for divided urban collectors Right shoulder that will not accommodate cyclists, per HDM §2.6.2.1, and no provision for breakdowns or turning movements Right shoulder that will accommodate cyclists, per HDM §2.6.2.1 Right shoulder, provision for breakdowns and turning movements						Minimum	Desirable
						0	1 to 2
						0	4
						5^{3}	6^{5}
						6	10
Uncurbed						Refer to Exhibit 2-5	
Design Speed (mph)	Maximum Percent Grade ${ }^{6}$			Minimum Stopping Sight Distance (ft)	Minimum Radius Curve (ft) $\mathrm{e}_{\text {max }}=4 \%$	Minimum Radius Curve (ft)$e_{\max }=6 \%$	
	Level	Rolling	Mountainous				
25	9	12	13	133	113		
30	9	11	12	175	176		
35	9	10	12	220	252		
40	9	10	12	271	356		
45	8	9	11	327	466		
50	7	8	10	387	595		

Notes:

1. For bridges, refer to the NYSDOT Bridge Manual, Section 2. Where the Bridge Manual only furnishes roadway width, subtract the lane width on this table from the roadway width to determine the shoulder width
2. Refer to HDM §2.6.2.1 for information on determining lane and shoulder widths for bicycling in urban areas. Note that bicyclists have the same rights and responsibilities as motorists, except as provided in Sections 1230-1236 of the New York State Vehicle and Traffic Law.
3. If high bicycling demand is anticipated or a bicycle route is present, and neither a 5 ft . min. shoulder/bicycle lane nor a 13 ft . min. shared lane can be provided, a justification is required for the nonstandard lane width. Refer to HDM §2.6.2.1 for more information.
4. Widths greater than 5 ft . (up to 7 ft .) are desirable for bicycle lanes adjacent to parking lanes.
5. It is desirable to provide 6 ft . where truck traffic is high and anticipated bicycle demand for the shoulder is high.
6. Maximum grades of short length (< 490 ft .) and on one-way downgrades may be 2% steeper.
